精英家教网 > 高中数学 > 题目详情
已知f(x)=(x-1)2,g(x)=x2-1,则f(g(x))(  )
A、在(-2,0)内递增
B、在(0,2)内递增
C、在(-
2
,0)内递增
D、在(0,
2
)内递增
考点:函数解析式的求解及常用方法,函数的单调性及单调区间
专题:函数的性质及应用
分析:根据题意,求出f(g(x))的解析式,利用复合函数的单调性判断f(g(x))的单调区间即可.
解答: 解:∵f(x)=(x-1)2,g(x)=x2-1,
∴f(g(x))=[(x2-1)-1]2=(x2-2)2
∴f(g(x))在(-∞,-
2
)和(0,
2
)上是单调减函数,
在(-
2
,0)和(
2
,+∞)上是单调增函数.
故选:C.
点评:本题考查了复合函数单调性判断问题,解题时应熟记复合函数的单调性,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα=
4
5
,cos(α+β)=-
3
5
.α、β均为锐角,求sinβ,cosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A,B,C满足:A∪∁RB=A∪∁RC,则下列(  )必成立.
A、B=C
B、A∩B=A∩C
C、∁RA∩B=∁RA∩C
D、A∩∁RB=A∩∁RC

查看答案和解析>>

科目:高中数学 来源: 题型:

若(
x
-
3
x
n的展开式的各项系数之和为1024,则展开式中x2项的二项式系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若三角形的三个内角的度数成等差数列,则中间的角是
 
度.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.点E在棱PA上,且PE=2EA.
(Ⅰ)求异面直线PA与CD所成的角;
(Ⅱ)求证:PC∥平面EBD;
(Ⅲ)求二面角A-BE-D的大小.(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若动点P从点A出发,沿正方形的边按如下路线运动:A→B→C→D→E→A→D,其中
AP
AB
AE
,则下列判断中:
①当P为BC的中点时λ+μ=2;  
②满足λ+μ=1的点P恰有三个;
③λ+μ的最大值为3;  
④若满足λ+μ=k的点P有且只有两个,则k∈(1,3).
正确判断的序号是
 
.(请写出所有正确判断的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x-ex(其中e为自然对数的底数),a,b,c∈R且满足a+b>0,b+c>0,c+a>0,则f(a)+f(b)+f(c)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)=x3-2x+5,求适合下列条件的自变量的增量和对应的函数增量:
(1)当x由2变到3;
(2)当x由2变到1;
(3)当x由2变到2+△x;
(4)当自变量由xn变到x.

查看答案和解析>>

同步练习册答案