精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=xm-ax的导函数f′(x)=2x+1,则a•m的值为(  )
A.1B.2C.3D.-2

分析 根据题意,对f(x)求导可得f′(x)=mxm-1-a,进而分析可得m=2,a=-1,计算可得am的值.

解答 解:根据题意,f(x)=xm-ax,其导数为f′(x)=mxm-1-a,
又由题意,f′(x)=2x+1,
则有m=2,a=-1;
则a•m=-2;
故选:D.

点评 本题考查导数的计算,关键是掌握导数的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面ABCD是直角梯形,AB∥CD,CD⊥AD,CD=2AB=2AD=2,M为PC的中点.
(Ⅰ)求证:BM∥平面PAD;
(Ⅱ)求证:直线BM⊥平面PDC;
(Ⅲ)求直线PD与平面BDM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=(n+1)4${\;}^{{a}_{n}}$-$\frac{1}{4{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C1的极坐标方程为ρ=4sinθ,曲线C2的参数方程为$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,0≤α<π),射线$θ=φ,θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$与曲线C1交于(不包括极点O)三点A,B,C.
(1)求证:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)当$φ=\frac{5π}{12}$时,B,C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)={x^3}-3{x^2}+2,g(x)=\left\{\begin{array}{l}x+\frac{1}{x}\;\;\;x>0\\-{x^2}-4x-2\;\;\;x≤0\end{array}\right.$,则方程g[f(x)]-a=0(a>0)的根的个数不可能为(  )
A.6个B.5个C.4个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图程序框图(见上图),如果输入的x,t均为2,S=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}的通项${a_n}=2n•({{{cos}^2}\frac{nπ}{3}-{{sin}^2}\frac{nπ}{3}})$,其前n项和为Sn,则S30=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2-4bx+2.
(Ⅰ)任取a∈{1,2,3},b∈{-1,1,2,3,4},记“f(x)在区间[1,+∞)上是增函数”为事件A,求A发生的概率;
(Ⅱ)任取(a,b)∈{(a,b)|a+4b-6≤0,a>0,b>0},记“关于x的方程f(x)=0有一个大于1的根和一个小于1的根”为事件B,求B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列语句中,不能成为命题的是(  )
A.6>10B.x>2C.若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=0D.0∈N

查看答案和解析>>

同步练习册答案