精英家教网 > 高中数学 > 题目详情

函数

(1) 判断并证明函数的奇偶性;

(2) 若,证明函数在(2,+)单调增;

(3) 对任意的恒成立,求的范围。

 

【答案】

(1)函数为奇函数。 (2) 。函数在单增;(3)

【解析】

试题分析:(1)该函数为奇函数。…………..1分

证明:函数定义域为

对于任意

所以函数为奇函数。

(2) 。设任意

,即

函数在单点增

(3)由题意:对于任意恒成立。

从而对于任意恒成立。

即对于任意恒成立。

则当有最大值

所以,

考点:本题主要考查函数的奇偶性、单调性,不等式恒成立问题。

点评:中档题,高一阶段,研究函数的奇偶性、单调性,多运用“定义”,这是处理这里问题的基本方法。对于“恒成立问题”,一般运用“分离参数法”,转化成求函数的最值问题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果对于函数f(x)的定义域内的任意x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”?
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对任意的x,x2∈[0,1]都有|f(x1)-f(x2)|≤
12

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[a,b]上的函数,用分点T:a=x0<x1<…<xi-1<xi<…<xn=b,将区间[a,b]任意划分成n个小区间,若存在常数M,使
ni=1
f(xi)-f(xi-1)|≤M恒成立,则称f(x)为[a,b]上的有界变差函数.
(1)判断函数f(x)=x+cosx在[-π,π]上是否为有界变差函数,并说明理由;
(2)定义在[a,b]上的单调函数f(x)是否一定为有界变差函数?若是,请给出证明;若不是,请说明理由;
(3)若定义在[a,b]上的函数f(x)满足:存在常数k,使得对于任意的x1,x2∈[a,b],|f(x1)-f(x2)|≤k|x1-x2|.证明:f(x)为[a,b]上的有界变差函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)集合A是由适合以下性质的函数f(x)组成的:对于任意的x≥0,f(x)∈(1,4],且f(x)在[0,+∞)上是减函数.
(1)判断函数f1(x)=2-
x
及f2(x)=1+3•(
1
2
)x
(x≥0)是否在集合A中?试说明理由;
(2)对于(1)中你认为是集合A中的函数f(x),不等式f(x)+f(x+2)≤k对于任意的x≥0总成立.求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=f(x)为定义在区间I上的函数,若对I上任意两个实数x1,x2都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]
成立,则f(x)称为I上的凹函数.
(1)判断f(x)=
3
x
(x>0)
是否为凹函数?
(2)已知函数f2(x)=x|ax-3|(a≠0)为区间[3,6]上的凹函数,请直接写出实数a的取值范围(不要求写出解题过程);
(3)设定义在R上的函数f3(x)满足对于任意实数x,y都有f3(x+y)=f3(x)•f3(y).求证:f3(x)为R上的凹函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)若函数y=f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称y=f(x)为“Ω函数”.
(1)判断下列函数,是否为“Ω函数”,并说明理由;
①f(x)=x3         ②f(x)=2x
(2)已知函数f(x)=tanx是一个“Ω函数”,求出所有的有序实数对(a,b).

查看答案和解析>>

同步练习册答案