【题目】设r是方程f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线l,l的方程为y=f(x0)+(x-x0),求出l与x轴交点的横坐标x1=x0-,称x1为r的一次近似值。过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴交点的横坐标x2=x1-,称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中,=-,称为r的n+1次近似值,上式称为牛顿迭代公式。已知是方程-6=0的一个根,若取x0=2作为r的初始近似值,则在保留四位小数的前提下,≈
A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497
科目:高中数学 来源: 题型:
【题目】设集合S={A0 , A1 , A2 , A3},在S上定义运算⊕:Ai⊕Aj=Ak , 其中k为i+j被4除的余数,i,j=0,1,2,3,则使关系式(Ai⊕Ai)⊕Aj=A0成立的有序数对(i,j)的组数为( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的一次数学竞赛中,全体参赛学生的竞赛成绩X近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有16名.
(1)试问此次参赛的学生总数约为多少人?
(2)若该校计划奖励竞赛成绩在80分以上(含80分)的学生,试问此次竞赛获奖励的学生约为多少人?
附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点.若A是PB的中点,求直线m的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com