精英家教网 > 高中数学 > 题目详情

【题目】r是方程f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线ll的方程为y=f(x0)+(x-x0),求出lx轴交点的横坐标x1=x0,称x1r的一次近似值。过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴交点的横坐标x2=x1,称x2r的二次近似值。重复以上过程,得r的近似值序列,其中,,称为rn+1次近似值,上式称为牛顿迭代公式。已知是方程-6=0的一个根,若取x0=2作为r的初始近似值,则在保留四位小数的前提下,

A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497

【答案】B

【解析】,,点处的切线方程为:,解得:

.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】观察下列各不等式:
,
,
,


(1)由上述不等式,归纳出一个与正整数 有关的一般性结论;
(2)用数学归纳法证明你得到的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合S={A0 , A1 , A2 , A3},在S上定义运算⊕:Ai⊕Aj=Ak , 其中k为i+j被4除的余数,i,j=0,1,2,3,则使关系式(Ai⊕Ai)⊕Aj=A0成立的有序数对(i,j)的组数为(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)当时,求曲线在处的切线方程;

2)过点作曲线的切线,若所有切线的斜率之和为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=(m2+5m+6)+(m2-2m-15)i ,当实数 m 为何值时,
(1)z 为实数;
(2)z 为虚数;
(3)z 为纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的一次数学竞赛中,全体参赛学生的竞赛成绩X近似服从正态分布N(70,100).已知成绩在90分以上(含90分)的学生有16名.

(1)试问此次参赛的学生总数约为多少人?

(2)若该校计划奖励竞赛成绩在80分以上(含80分)的学生,试问此次竞赛获奖励的学生约为多少人?

附:P(|X-μ|<σ)=0.683,P(|X-μ|<2σ)=0.954,P(|X-μ|<3σ)=0.997

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=x2-2x+1+alnx 有两个极值点 x1,x2 , 且x1<x2 ,则( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ) 证明f(x)在[1,+∞)上是增函数;
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M(x,y)到直线lx=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点.若APB的中点,求直线m的斜率.

查看答案和解析>>

同步练习册答案