分析 (I)由a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,即可证明,再利用等差数列的通项公式即可得出an.
(II)对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,可得bn=$\frac{1}{n(n+1)}$,再利用“裂项求和”即可得出.
解答 证明:(I)∵a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$.
∴数列{$\frac{1}{{a}_{n}}$}为等差数列,首项为2,公差为$\frac{1}{2}$.
∴$\frac{1}{{a}_{n}}$=2+$\frac{1}{2}(n-1)$=$\frac{n+3}{2}$,∴an=$\frac{2}{n+3}$.
(II)对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,
∴$(1+\frac{(n+3)^{2}{b}_{n}}{4})•n$=$\frac{5{n}^{2}+10n+9}{4n+4}$,
化为n•(n+3)2bn=$\frac{5{n}^{2}+10n+9}{n+1}$-4n=$\frac{(n+3)^{2}}{n+1}$,
∴bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$.
∴$\frac{1}{2}$≤Sn<1.
点评 本题考查了等差数列的通项公式、“裂项求和”、不等式的性质、数列的单调性,考查了变形能力、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4个 | B. | 5个 | C. | 6个 | D. | 7个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com