精英家教网 > 高中数学 > 题目详情
8.已知数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*).
(I)证明数列{$\frac{1}{{a}_{n}}$}为等差数列,并求数列{an}的通项公式;
(Ⅱ)已知数列{bn}的前n项和为Sn,且对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,证明:$\frac{1}{2}$≤Sn<1.

分析 (I)由a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,即可证明,再利用等差数列的通项公式即可得出an
(II)对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,可得bn=$\frac{1}{n(n+1)}$,再利用“裂项求和”即可得出.

解答 证明:(I)∵a1=$\frac{1}{2}$,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$(n∈N*),两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$.
∴数列{$\frac{1}{{a}_{n}}$}为等差数列,首项为2,公差为$\frac{1}{2}$.
∴$\frac{1}{{a}_{n}}$=2+$\frac{1}{2}(n-1)$=$\frac{n+3}{2}$,∴an=$\frac{2}{n+3}$.
(II)对任意正整数n,都有(1+$\frac{{b}_{n}}{{{a}^{2}}_{n}}$)•n=$\frac{5{n}^{2}+10n+9}{4n+4}$成立,
∴$(1+\frac{(n+3)^{2}{b}_{n}}{4})•n$=$\frac{5{n}^{2}+10n+9}{4n+4}$,
化为n•(n+3)2bn=$\frac{5{n}^{2}+10n+9}{n+1}$-4n=$\frac{(n+3)^{2}}{n+1}$,
∴bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$.
∴$\frac{1}{2}$≤Sn<1.

点评 本题考查了等差数列的通项公式、“裂项求和”、不等式的性质、数列的单调性,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知三个不等式:(1)x2-2x-3<0;(2)$\frac{x-2}{x-4}<0$;(3)x2-(a+$\frac{1}{a}$)x+1<0(a>0).若同时满足(1)(2)的x也满足(3).求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为4$\sqrt{2}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(1,sinθ),$\overrightarrow{b}$=(2,1).
(1)当θ=$\frac{π}{6}$时,求向量2$\overrightarrow{a}$+$\overrightarrow{b}$的坐标;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且θ∈(0,$\frac{π}{2}$),求sin(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某几何体的三视图如图所示,分别是等边三角形、等腰三角形和菱形.则该几何体的体积是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ax-a-x(a>0且a≠1)是(  )
A.偶函数B.奇函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线y2=4x的焦点F,准线为l,点P为抛物线上一点,且在第一象限,过P点作PA⊥l,垂足为A,|PF|=4,则$\overrightarrow{AF}$•$\overrightarrow{FP}$的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.指数函数y=ax-1+1的反函数的图象过定点(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数满足f(x)=$\frac{1}{f(x+1)}$,当x∈[-1,1]时f(x)=|x|,那么函数y=f(x)的图象与函数f(x)=|log5x|的图象的交点共有(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

同步练习册答案