精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ln(x+1),g(x)=kx(k∈R).
(1)证明:当x>0时,f(x)<x;
(2)证明:当k<1时,存在x0>0,使得对任意的x∈(0,x0),恒有f(x)>g(x).

【答案】
(1)解:令F(x)=f(x)﹣x=ln(1+x)﹣x,x∈(0,+∞),

则有F′(x)= ﹣1=﹣

当x∈(0,+∞)时,F′(x)<0,所以F(x)在(0,+∞)上单调递减;

故当x>0时,F(x)<F(0)=0,即当x>0时,f(x)<x


(2)解:令G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),

则有G′(x)= ﹣k=

当k≤0时G′(x)>0,所以G(x)在(0,+∞)上单调递增,

G(x)>G(0)=0,故对任意正实数x0均满足题意.

当0<k<1时,令G′(x)=0,得x= = ﹣1>0.

取x0= ﹣1,对任意x∈(0,x0),恒有G′(x)>0,

从而G(x)在(0,x0)上单调递增,G(x)>G(0)=0,即f(x)>g(x)


【解析】(1)构造函数F(x)=f(x)﹣x=ln(1+x)﹣x,x∈(0,+∞),利用函数F(x)的单调性,只需求出F(x)值域即可;(2)构造函数G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),利用其单调性,讨论其值域情况即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:

温度

-5

0

6

8

12

15

20

生长速度

2

4

5

6

7

8

10

(1)求生长速度关于温度的线性回归方程;(斜率和截距均保留为三位有效数字);

(2)利用(1)中的线性回归方程,分析气温从时生长速度的变化情况,如果某月的平均气温是时,预测这月大约能生长多少.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= ln(1﹣x)的定义域是(
A.(﹣1,1)
B.[﹣1,1)
C.[﹣1,1]
D.(﹣1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一个容积V一定的铝合金盖的圆柱形铁桶,已知单位面积铝合金的价格是铁的3倍,当总造价最少时,桶高为(
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)图象上的点(1,﹣ )处的切线斜率为﹣4,
(1)求f(x)的表达式.
(2)求y=f(x)在区间[﹣3,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(Ⅰ)证明:PF⊥FD;
(Ⅱ)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(Ⅲ)若PB与平面ABCD所成的角为45°,求二面角A﹣PD﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线与曲线的两个交点为,求的值.

查看答案和解析>>

同步练习册答案