精英家教网 > 高中数学 > 题目详情
设抛物线y2=8x的焦点为F,过F,的直线交抛物线于A(x1,y1),B(x2,y2),则y1y2=(  )
A、8B、16C、-8D、-16
分析:当直线斜率不存在时,直线方程为x=
p
2
,由
x=
p
2
y2=2px
得到交点坐标,从而得到y1•y2的值.
解答:解:当直线斜率不存在时,直线方程为x=
p
2

 
x=
p
2
y2=2px
得两交点的坐标(
p
2
,±p)

∵抛物线y2=8x,∴p=8,
∴y1•y2=-p2=-16.
故选D.
点评:本题考查直线和抛物线的位置关系的综合运用,解题时要认真审题,注意抛物线性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是(  )
A、[-
1
2
1
2
]
B、[-2,2]
C、[-1,1]
D、[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

13、设抛物线y2=8x的准线与x轴交于点Q,则点Q的坐标是
(-2,0)
;若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的焦点为F,过点F作直线交抛物线于A、B两点,若线段AB的中点E到y轴的距离为3,则AB的长为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的准线与x轴交于点Q,若过Q点的直线l与抛物线有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案