精英家教网 > 高中数学 > 题目详情
7.集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分表示的集合是(  )
A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}

分析 根据Venn图和集合之间的关系进行判断.

解答 解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁UB).
A={x|x2-x-2<0}={x|-1<x<2},B={x|y=ln(1-x)}={x|1-x>0}={x|x<1},
则∁UB={x|x≥1},
则A∩(∁UB)={x|1≤x<2}.
故选:B.

点评 本题主要考查Venn图表达 集合的关系和运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设k∈Z,下列四个命题中正确的有③④.(填所有正确命题的序号)
①若sinα+sinβ=2,则α=β=2kπ+$\frac{π}{2}$;
②若tanα+$\frac{1}{tanα}$=2,则α=2kπ+$\frac{π}{4}$;
③若sinα+cosα=1,则sin3α+cos3α=1;
④若sin3α+cos3α=1,则sinα+cosα=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)和g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在[a,b]上有2个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=-x2+(m+2)x-1和g(x)=2x+3是[1,5]上的“关联函数”,则实数m的取值范围为(4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2$\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}+2co{s}^{2}\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点O为坐标原点,点M(2,1),点N(x,y)满足不等式组$\left\{\begin{array}{l}{x-2y+2≥0}\\{x+y-2≥0}\\{x≤4}\end{array}\right.$,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数1,m,4构成一个等比数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的离心率为$\frac{\sqrt{2}}{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图所示的算法流程图,则输出的结果是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.我县某中学为了配备高一新生中寄宿生的用品,招生前随机抽取部分准高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方图中x的值;
(2)如果上学路上所需时间不少于40分钟的学生应寄宿,且该校计划招生1800名,请估计新生中应有多少名学生寄宿;
(3)若不安排寄宿的话,请估计所有学生上学的平均耗时(用组中值代替各组数据的平均值).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)在R上可导,且满足(x-2)f′(x)≥0,则f(-2015)+f(2015)≥(大于等于)2f(2)(填两个数值的大小关系:>、=、<、≥、≤).

查看答案和解析>>

同步练习册答案