精英家教网 > 高中数学 > 题目详情
11.设A={x|x=2k+1,k∈Z},B={x|x=2(k+1),k∈Z},C={x|x=2k-1,k∈N},D={x|x=2(k-1),k∈Z},则A、B、C、D中相等的集合有(  )
A.A=C且B=DB.B=DC.A=CD.A=B=D

分析 利用集合的含义,即可得到集合的关系.

解答 解:A={x|x=2k+1,k∈Z}={奇数},B={x|x=2(k+1),k∈Z}={偶数},C={x|x=2k-1,k∈N}={大于等于-1的奇数},D={x|x=2(k-1),k∈Z}={偶数},
∴B=D,
故选:B.

点评 本题考查集合的基本性质和应用,解题时要熟练掌握基本概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知x,y,z是正实数,且x+4y+z=2.则$\frac{1}{x+y}$+$\frac{2(x+y)}{3y+z}$的最小值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(1)求a,b的值;
(2)设g(x)=x2-2x,求证:对任意x∈(0,+∞),有f(x)≤g(x);
(3)若方程f(x)+m=0在[$\frac{1}{e}$,e]内有两个不等实根,求实数m的取值范围(其中e为自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{2x}{1+x}$,求f(1)+f(2)+…+f(100)+f($\frac{1}{2}$)+f($\frac{2}{2}$)+…+f($\frac{100}{2}$)+…+f($\frac{1}{100}$)+f($\frac{2}{100}$)+…+f($\frac{100}{100}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-1,则当x<0时,f(x)=1-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=ax2-2x+a+b(a≠0)的定义域为[0,3],值域为[1,5],求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{\sqrt{x}-1}{\sqrt{x}+1}$的值域为[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是R上的减函数,若a+b<0,则下列正确的是(  )
A.f(a)+f(b)<-[f(a)+f(b)]B.f(a)+f(b)<f(-a)+f(-b)C.f(a)+f(b)>-[f(a)+f(b)]D.f(a)+f(b)>f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若曲线f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx+d(a,b,c>0)上不存在斜率为0的切线,则$\frac{f′(1)}{b}$-1的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案