【题目】如图所示,天花板上挂着3串玻璃球,射击玻璃球规则:每次击中1球,每串中下面球没击中,上面球不能击中,则把这6个球全部击中射击方法数是( )
A.78B.60C.48D.36
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,是矩形,平面,,,四棱锥外接球的球心为,点是棱上的一个动点.给出如下命题:①直线与直线所成的角中最小的角为;②与一定不垂直;③三棱锥的体积为定值;④的最小值为.其中正确命题的序号是__________.(将你认为正确的命题序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.
(1)若,求数列的所有项的和;
(2)若,求的最大值;
(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是菱形,底面,,,点为棱的中点,点分别为棱上的动点(与所在棱的端点不重合),且满足.
(1)证明:平面平面;
(2)当三棱锥的体积最大时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,若an2﹣an﹣12=p,(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列“的判断:
①若{an}是等方差数列,则{an2}是等差数列;
②{(﹣1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;
④若{an}既是等方差数列,又是等差数列,则该数列为常数列.
其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽子3个,肉粽子2个,白粽子5个,这三种粽子的外观完全相同,从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设ξ表示取到的豆沙粽子个数,求ξ的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知递增数列{an}前n项和为Sn,且满足a1=3,4Sn﹣4n+1=an2,设bn(n∈N*)且数列{bn}的前n项和为Tn
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)若对任意的n∈N*,不等式λTnn(﹣1)n+1恒成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某银行推出一款短期理财产品,约定如下:
(1)购买金额固定;
(2)购买天数可自由选择,但最短3天,最长不超过10天;
(3)购买天数与利息的关系,可选择下述三种方案中的一种:
方案一:;方案二:;方案三:.
请你根据以上材料,研究下面两个问题:
(1)结合所学的数学知识和方法,用其它方式刻画上述三种方案的函数特征;
(2)依据你的分析,给出一个最佳理财方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.
(1)请将列联表填写完整:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 27 | ||
无武汉旅行史 | 18 | ||
总计 | 27 | 54 |
(2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com