精英家教网 > 高中数学 > 题目详情
19.设函数g(x)=1+x且当x≠0时,f(g(x))=$\frac{1-x}{x}$,则f($\frac{1}{2}$)=(  )
A.0B.1C.3D.-3

分析 令g(x)=1+x=$\frac{1}{2}$,则x=-$\frac{1}{2}$,结合f(g(x))=$\frac{1-x}{x}$,代入可得答案.

解答 解:令g(x)=1+x=$\frac{1}{2}$,
则x=-$\frac{1}{2}$,
∵f(g(x))=$\frac{1-x}{x}$,
∴f($\frac{1}{2}$)=$\frac{1-(-\frac{1}{2})}{-\frac{1}{2}}$=-3,
故选:D

点评 本题考查的知识点是函数的值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.过点N(2,6),倾斜角为90°的直线方程为x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,AD=2AB=2BC=2.求证:PC⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{lnx}{{x}^{2}+1}$,则f′(1)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆的方程为x2+y2+2x=0则该圆的半径为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正四棱锥S-ABCD中,底面边长为6cm,侧棱长为3$\sqrt{5}$cm.
(1)求正四棱锥S-ABCD的体积;
(2)求二面角S-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-x+10,x>a}\\{{x}^{2}+2x,x≤a}\end{array}\right.$,若对任意b,总存在实数x0,使得f(x0)=b成立,则实数a的取值范围是[-5,11].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和为Sn,a1=1,an+an+1=2n-1,则Sn=$\left\{\begin{array}{l}{\frac{n(n-1)}{2},n为偶数}\\{\frac{{n}^{2}-n+2}{2},n为奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=x2+4x+1,
(1)求f(2x-1)的解析式;
(2)当x=4时,求f(x)的值.

查看答案和解析>>

同步练习册答案