精英家教网 > 高中数学 > 题目详情

如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=

(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。

(1)以A为原点,以射线AB,AC,AE为坐标轴建立空间直角坐标系,
由C作平面ABD的垂线,垂足为F,则F为BC的中点,,所以点C的坐标为
故:DE⊥AC(2)(3)存在M为BE的中点,使得CM//平面ADE

解析试题分析:以A为原点,以射线AB,AC,AE为坐标轴建立空间直角坐标系,

由C作平面ABD的垂线,垂足为F,则F为BC的中点,,
所以点C的坐标为
(1),故:DE⊥AC。
(2)
设平面BCE的法向量为,则,
设线面角为
(3)设,则。若CM//平面ADE,则,所以,故存在M为BE的中点,使得CM//平面ADE。
考点:空间线面平行的判定及性质,线面所成角的求解
点评:采用空间向量的方法求解立体几何问题的步骤:建立空间直角坐标系,写出相关点及相关向量的坐标,将坐标代入证明或计算求解的对应公式求解,空间向量法要求学生数据处理时认真仔细

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,分别为的中点,,且

(1)证明:
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,M、N分别是AB、PC的中点,且.证明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,中,侧棱与底面垂直,,,点分别为的中点.

(1)证明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,矩形所在的平面和圆所在的平面互相垂直,且.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
(3)设中点,在边上找一点,使平面,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。

(I)求证:A1B∥平面AMC1
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.

(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知:如图,中,是角平分线。求证:

查看答案和解析>>

同步练习册答案