精英家教网 > 高中数学 > 题目详情
20.数列1+$\frac{1}{{2}^{2}}$,1-$\frac{3}{{4}^{2}}$,1+$\frac{5}{{6}^{2}}$,1-$\frac{7}{{8}^{2}}$…的通项an=1+(-1)n+1•$\frac{2n-1}{(2n)^{2}}$.

分析 根据数列的规律进行求解即可.

解答 解:1,3,5,7,…对应的通项公式为2n-1,
22,42,62,82,…对应的通项公式为(2n)2
则数列的通项公式为an=1+(-1)n+1•$\frac{2n-1}{(2n)^{2}}$,
故答案为:1+(-1)n+1•$\frac{2n-1}{(2n)^{2}}$

点评 本题主要考查数列通项公式的求解,根据数列寻找规律是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如下表:
xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)请求出上表中的xl,x2,x3,并直接写出函数f(x)的解析式.
(Ⅱ)将f(x)的图象沿x釉向右平移$\frac{2}{3}$个单位得到函数g(x),若函数g(x)在x∈[0,m](其中m∈(2,4))上的值域为[-$\sqrt{3}$,$\sqrt{3}$],且此时其图象的最高点和最低点分别为P,Q,求$\overrightarrow{OQ}$与$\overrightarrow{QP}$夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设θ为向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角,已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,$\overrightarrow{OP}$=t$\overrightarrow{OA}$,$\overrightarrow{OQ}$=(1-t)$\overrightarrow{OB}$,且|$\overrightarrow{PQ}$|在t=$\frac{1}{4}$时取得最小值,则cosθ=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若f(x)是定义在R上的函数,对任意的实数x,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=1,f(2013)的值是2013.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.人体正常体温的标准值是36.5℃.一般地,人体体温偏离标准值不超过0.5℃,均视作正常体温,设人体体温为x℃.(1)写出x满足的绝对值不等式;
(2)解上述不等式;
(3)判断35.9℃和37.2℃的体温是否属于正常体温.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x+2)=x2-2x,则f(x)的表达式为f(x)=x2-6x+8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=-x2+x在[-3,0]上的最大值和最小值分别是$\frac{1}{4}$,-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={x|-1≤x≤5},B={x|x<a或x>a+3},若A∪B=B,则a的取值范围是a>5或a<-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2+(p-1)x+p-1=0},B={x|y=$\frac{2{x}^{2}-3}{\sqrt{x}}$},若A∩B=∅,求实数p的取值范围.

查看答案和解析>>

同步练习册答案