精英家教网 > 高中数学 > 题目详情

【题目】若直线axby—4=0和圆x2y2=4没有公共点,则过点(ab)的直线与椭圆=1的公共点个数为(  )

A. 0 B. 1 C. 2 D. ab的取值来确定

【答案】C

【解析】

根据直线ax+by+4=0和圆x2+y2=4没有公共点,可推断点(a,b)是以原点为圆心,2为半径的圆内的点,根据圆的方程和椭圆方程可知圆x2+y2=4内切于椭圆,进而可知点P是椭圆内的点,进而判断可得答案.

因为直线ax+by+4=0和圆x2+y2=4没有公共点,

所以原点到直线ax+by+4=0的距离d=>2,

所以a2+b2<4,

所以点P(a,b)是在以原点为圆心,2为半径的圆内的点.

椭圆的长半轴 3,短半轴为 2

圆x2+y2=4内切于椭圆

点P是椭圆内的点

过点P(a,b)的一条直线与椭圆的公共点数为2.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C1:y2=2xC2:y=x2在第一象限内的交点为P.

(1)求过点P且与曲线C2相切的直线方程;

(2)求两条曲线所围图形(如图所示的阴影部分)的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin(3x+φ)的图象向右平移 个单位后得到的图象关于点( ,0)对称,则|φ|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把ABDACD折成互相垂直的两个平面后,某学生得出下列四个结论:

BDAC②△BAC是等边三角形;

③三棱锥DABC是正三棱锥; ④平面ADC⊥平面ABC

其中正确的是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,点P,G分别是的中点,已知⊥平面ABC,==3,==2.

(I)求异面直线AB所成角的余弦值;

(II)求证:⊥平面

(III)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(1+x)﹣ (a>0)
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范围;
(3)证明: (e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:实数满足:实数满足

(1)若为真命题,求实数的取值范围.

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCDAP=ABBP=BC=2EF分别是PB,PC的中点.

()证明:EF平面PAD

()求三棱锥EABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p:实数x满足x2-2(a+1)x+2a+a2<0,q:实数x满足

(1)若a=1,且p∧q为真,求实数x的取值范围;

(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案