精英家教网 > 高中数学 > 题目详情

【题目】某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

1)求续驶里程在的车辆数;

2)求续驶里程的平均数;

3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.

【答案】15辆;(2170;(3.

【解析】

1)根据所有长方形面积之和为1,求得未知数,计算出区间长方形的面积之和即为概率,用此数据乘以样本容量即可;

2)用每个长方形的面积乘以所在区间底边中点值,再求和即可得到结果;

3)先计算出在中的车辆数量,再列举出所有的抽取可能性,找出满足题意的可能性,用古典概型的概率计算公式即可求得.

由题意可知,

故续驶里程在的车辆数为:

2)由直方图可得:

续航里程的平均数为:.

3)由(2)及题意可知,续驶里程在的车辆数为3,分别记为

续驶里程在的车辆数为2,分别记为

事件其中恰有一辆汽车的续驶里程为

从该5辆汽车中随机抽取2辆,所有的可能如下:

10种情况,

事件包含的可能有共 6种情况,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】多面体中,平面∥平面平面为直角梯形,.

1)求证:直线平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数下列命题:( )

函数的图象关于原点对称; 函数是周期函数;

,函数取最大值;函数的图象与函数的图象没有公共点,其中正确命题的序号是

(A)①③ (B)②③ (C)①④ (D)②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为( )

A. 3B. 2C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内两点M4,﹣2),N24.

1)求MN的垂直平分线方程;

2)直线l经过点A30),且点M和点N到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形,平面分别是的中点.

1证明:

2上的动点,与平面所成最大角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中, ,点分别是的中点.

(1)求证: ∥平面

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,EF分别为A1C1BC的中点,MN分别为A1BA1C的中点.求证:

1MN∥平面ABC

2EF∥平面AA1B1B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切于点,且被轴所截得的弦长为,圆心在第一象限.

(Ⅰ)求圆的方程;

(Ⅱ)若点是直线上的动点,过作圆的切线,切点为,当△的面积最小时,求切线的方程.

查看答案和解析>>

同步练习册答案