精英家教网 > 高中数学 > 题目详情

设数列{an}满足an=2an-1+1(n≥2),且a1=1,bn=log2(an+1)
(1)求数列{an}的通项公式;
(2)设数列{数学公式}的前n项和为Sn,证明:数学公式

(1)解:因为an=2an-1+1(n≥2),所以an+1=2(an-1+1)(n≥2),
所以数列{an+1}是以a1+1=2为首项,以2为公比的等比数列.
所以an+1=2•2n-1=2n
所以an=2n-1…(4分)
(2)证明:因为an=2n-1,所以bn=log2(an+1)=n…(6分)
所以=).…(8分)
所以Sn=…++)=
=.…(12分)
分析:(1)由已知可得an+1=2(an-1+1),数列{an+1}是以a1+1=2为首项,以2为公比的等比数列,即可求数列{an}的通项公式;
(2)先求bn,代入,再利用裂项求和方法即可证明.
点评:本题主要考查了等比数列的判断与证明,等比数列的通项公式及裂项求和方法的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,且对任意的n∈N*,点Pn(n,an)都有
.
PnPn+1
=(1,2)
,则数列{an}的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时.
则{cn}
是公差为8的准等差数列.
(I)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式:
(Ⅱ)设(I)中的数列{an}的前n项和为Sn,试研究:是否存在实数a,使得数列Sn有连续的两项都等于50.若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如数列cn:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时
,则数列{cn}是公差为8的准等差数列.设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.
(Ⅰ)求证:{an}为准等差数列;
(Ⅱ)求证:{an}的通项公式及前20项和S20

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=2,an+1=1-
1
an
,令An=a1a2an,则A2013
=(  )

查看答案和解析>>

同步练习册答案