精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax+
xx-1
(x>1)
,若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,
(1)求f(x)的最小值;
(2)求f(x)>b恒成立的概率.
分析:(1)把f(x) 的解析式化简变形后利用基本不等式求出其最小值,注意检验等号成立的条件.
(2)f(x)>b恒成立就转化为(
a
+1)2>b
成立,用列举法求出基本事件总数为12个,找出使
“f(x)>b恒成立”,的时间的个数为10个,由此求得f(x)>b恒成立的概率.
解答:解:(1)x>1,a>0,f(x)=ax+
x-1+1
x-1
=ax+
1
x-1
+1
…(2分)
=a(x-1)+
1
x-1
+1+a
 ≥2
a
+1+a=(
a
+1)2
,当且仅当 a(x-1)=
1
x-1
 时,等号成立.…(4分)
故f(x)的最小值为 (
a
+1)
2
.…(6分)
(2)f(x)>b恒成立就转化为(
a
+1)2>b
成立.
则所有的基本事件总数为12个,即
(1,2),(1,3),(1,4),(1,5);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5);…(8分)
设事件 A:“f(x)>b恒成立”,
事件A包含事件:(1,2),(1,3);(2,2),(2,3),(2,4),(2,5),
(3,2),(3,3),(3,4),(3,5),共10个.…(10分)
由古典概型得 P(A)=
10
12
=
5
6
.…(12分)
点评:本题主要考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键;用列举法计算基本事件的总数,要注意不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
a+1
x
 
(a>0)
,g(x)=4-x,已知满足f(x)=g(x)的x有且只有一个.
(Ⅰ)求a的值;
(Ⅱ)若f(x)+
m
x
>1
对一切x>0恒成立,求m的取值范围;
(Ⅲ)若函数h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域为[m,n](其中n>m>0),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,
(1)求y=f(x)的解析式,并求其单调区间;
(2)用阴影标出曲线y=f(x)与此切线以及x轴所围成的图形,并求此图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ax-1x+1
;其中a∈R

(Ⅰ)解不等式f(x)≤1;
(Ⅱ)求a的取值范围,使f(x)在区间(0,+∞)上是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案