精英家教网 > 高中数学 > 题目详情
已知椭圆c:
x2
a2
+
y2
b2
=1(a>b>0),左、右两个焦点分别为F1、F2,上顶点A(0,b),△AF1F2是正三角形且周长为6.
(1)求椭圆C的标准方程及离心率;
(2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|+|PO|的最小值,并求出此时点P的坐标.
分析:(1)根据椭圆的定义和△AF1F2周长为6,建立关于a、b、c的方程组,解之得a=2、b=
3
且c=1,即可得到椭圆C的标准方程,用离心率的公式即可得到该椭圆的离心率;
(2)设直线AF1的方程为y=
3
(x+1),求出原点O关于直线AF1的对称点M的坐标为(-
3
2
3
2
),从而得到|PF2|+|PM|的最小值为|MF2|=
7
,再由MF2的方程y=-
3
5
(x-1)与AF1方程联解,即可得到此时点P的坐标.
解答:解:(1)由题意,得
a=2c
a+a+2c=6
a2=b2+c2
,解之得a=2,b=
3
,c=1
故椭圆C的方程为
x2
4
+
y2
3
=1,离心率e=
1
2

(2)∵△AF1F2是正三角形,可得直线AF1的斜率为k=tan
π
3
=
3

∴直线AF1的方程为y=
3
(x+1)
设点O关于直线AF1的对称点为M(m,n),则
n
m
3
=-1
n
2
=
3
(
m
2
+1)

解之得m=-
3
2
,n=
3
2
,可得M坐标为(-
3
2
3
2
),
∵|PO|=|PM|,|PF2|+|PO|=|PF2|+|PM|>|MF2|
∴|PF2|+|PM|的最小值为|MF2|=
(-
3
2
-1)2+(
3
2
-0)2
=
7

直线MF2的方程为y=
3
2
-0
-
3
2
-1
(x-1),即y=-
3
5
(x-1)
y=-
3
5
(x-1)
y=
3
(x+1)
解得
x=-
2
3
y=
3
3
,所以此时点P的坐标为(-
2
3
3
3
).
综上所述,可得求|PF2|+|PO|的最小值为
7
,此时点P的坐标为(-
2
3
3
3
).
点评:本题在已知椭圆上顶点与焦距构成正三角形的周长情况下,求椭圆的标准方程并依此求一个距离和的最小值.着重考查了椭圆的标准方程与简单几何性质和运用对称解决距离之和最小值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案