精英家教网 > 高中数学 > 题目详情
已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足对任意实数x,f(x)+f(-x)=x2,对任意正数x,f′(x)>x,若f(2-a)-f(a)≥2-2a,则a的范围是
 
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:令g(x)=f(x)-
1
2
x2,由g(-x)+g(x)=0,可得函数g(x)为奇函数.利用导数可得函数g(x)在R上是增函数,f(2-a)-f(a)≥2-2a,即g(2-a)≥g(a),可得 2-a≥a,由此解得a的范围.
解答: 解:令g(x)=f(x)-
1
2
x2
∵g(-x)+g(x)=f(-x)-
1
2
x2+f(x)-
1
2
x2=0,
∴函数g(x)为奇函数.
∵x∈(0,+∞)时,g′(x)=f′(x)-x>0,
故函数g(x)在(0,+∞)上是增函数,故函数g(x)在(-∞,0)上也是增函数,
由f(0)=0,可得g(x)在R上是增函数.
f(2-a)-f(a)≥2-2a,等价于f(2-a)-
(2-a)2
2
≥f(a)-
a2
2
,即g(2-a)≥g(a),
∴2-a≥a,解得a≤1,
故答案为:(-∞,1].
点评:本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过椭圆
x2
3
+
y2
2
=1的右焦点F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.
(1)证明:直线MN必过定点,并求此定点;
(2)若弦AB,CD的斜率均存在,求△FMN的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
3
),x∈R.
(1)在给定的直角坐标系中,运用“五点法”画出该函数在x∈[-
π
6
6
]的图象;
(2)若θ为锐角,且满足f(θ)-f(-θ)=1,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c均为非零实数,集合A={x|x=
|a|
a
+
b
|b|
+
ab
|ab|
},则集合A的元素的个数为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P1(x1,y1)是直线l:f(x,y)=0上的一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直线与直线l的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F(x)=
f(x)
x
在定义域(0,+∞)内为单调增函数,若f(x)=lnx+ax2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:cos4θ+sin4θ=
5
9
,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥曲线C:
x=2cosα
y=
3
sinα
(α为参数)和定点A(0,
3
),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.
(1)求直线AF2的直角坐标方程;
(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|-|NF1||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若ξ是离散型随机变量,则E(ξ-E(ξ))的值为(  )
A、E(ξ)
B、0
C、(E(ξ))2
D、2E(ξ)

查看答案和解析>>

同步练习册答案