精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆),圆),若圆的一条切线与椭圆相交于两点.

(1)当 时,若点都在坐标轴的正半轴上,求椭圆的方程;

(2)若以为直径的圆经过坐标原点,探究之间的等量关系,并说明理由.

【答案】(1)椭圆的方程是;(2)满足等量关系

【解析】试题分析:

(1)首先利用直线到圆心的距离等于半径求得 的值,然后结合几何关系求得 的值即可求得椭圆的标准方程.

(2)将原问题转化为,联立直线与椭圆的标准方程,结合根与系数的关系整理计算即可求得 之间的等量关系.

试题解析:

解:(1)∵直线相切,∴.

,解得.

∵点都在坐标轴正半轴上,

.

∴切线与坐标轴的交点为 .

.

∴椭圆的方程是.

(2)设

∵以为直径的圆经过点

,即.

∵点在直线上,

.

(*)

消去,得.

显然

∴由一元二次方程根与系数的关系,得

代入(*)式,得.

整理,得.

又由(1),有.

消去,得

满足等量关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求出圆的直角坐标方程;

(2)已知圆轴相交于 两点,直线 关于点对称的直线为.若直线上存在点使得,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若 ,求函数的单调区间;

(2)若,且方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆),圆),若圆的一条切线与椭圆相交于两点.

(1)当 时,若点都在坐标轴的正半轴上,求椭圆的方程;

(2)若以为直径的圆经过坐标原点,探究是否满足,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.若时方程有两 个不同的实根,则实数的取值范围是________;若的值域为,则实数

取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·广东卷)若直线l1l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(  )

A. ll1l2都不相交

B. ll1l2都相交

C. l至多与l1l2中的一条相交

D. l至少与l1l2中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是__________.(写出所有正确命题的序号)

①已知,“”是“”的充要条件;

②已知平面向量,“”是“”的必要不充分条件;

③已知,“”是“”的充分不必要条件;

④命题:“,使”的否定为:“,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)过原点作函数图象的切线,求切点的横坐标;

(2)对,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案