精英家教网 > 高中数学 > 题目详情

定义在上的函数同时满足以下条件:①函数上是减函数,在上是增函数;②是偶函数;③函数处的切线与直线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在使得,求实数的取值范围.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)由三个条件可得三个等式,从而可求出三个未知数.(Ⅱ)一般地若存在使得,则;若存在使得,则.在本题中,由可得: .则大于的最小值.
试题解析:(Ⅰ),由题设可得:

所以
(Ⅱ)由得: 即:
由题意得:
所以单调递增,在上单调递减
,所以的最小值为

考点:函数的性质,导数的求法及应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数处的切线垂直轴,求的值;
(Ⅱ)若函数在区间上为增函数,求的取值范围;
(Ⅲ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中.
(1)当时,求函数在区间上的最大值;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当a=1时,求曲线在点(3,)处的切线方程
(2)求函数的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1) 当时,求的单调区间;
(2) 若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(I)求函数的单调区间;
(II)当时,若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若在区间[0,2]上恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

同步练习册答案