精英家教网 > 高中数学 > 题目详情
6.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$,则z=-3x+y的最小值为(  )
A.-4B.-5C.-6D.-7

分析 作$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$表示的平面区域,化简目标函数,从而求最小值即可.

解答 解:作$\left\{\begin{array}{l}{x-y≤1}\\{2x+y≤5}\\{x≥1}\end{array}\right.$表示的平面区域如下,

z=-3x+y可化为y=3x+z,
故当过点(2,1)时,z有最小值,z=x-2y的最小值为-3×2+1=-5;
故答案为:-5.

点评 本题考查了线性规划的应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{\sqrt{x+1}}{\sqrt{3-x}}$的定义域是(  )
A.(-∞,3)B.(-1,3)C.[-1,3)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.正项等比数列{an}中,前n项和为Sn,若S4=30,a3+a5=40,则数列{an}的前9项的和为1022.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,B={x|0≤x-1<8},C={x∈R|x<a或x>a+1}.
(1)求∁RA∩B
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用数学归纳法证明:1×2+2×3+3×4+…+n×(n+1)=$\frac{n(n+1)(n+2)}{3}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是定义在R上的函数,且对任意x,y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,且f(1)=$-\frac{2}{3}$.
(1)证明f(x)在(-∞,+∞)上的单调性.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)当x∈[-2,6]时,解不等式f(x2-3)>f(x)-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\sqrt{3}$sinωx+cosωx-1(ω>0),且满足相邻两个最大值间的距离为π;
(1)求ω
(2)若y=f(x)的图象向右平移a(a>0)个单位,图象再向上移动一个单位得到y=g(x)的图象,且y=g(x)为奇函数,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“x>0”是“x2>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x-alnx,$g(x)=-\frac{1+a}{x}$(a∈R).
(1)若a=1,求函数f(x)在(2,f(2))处的切线方程;
(2)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(3)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案