精英家教网 > 高中数学 > 题目详情

【题目】下列命题中:

①若样本数据的方差为16,则数据的方差为64

②“平面向量夹角为锐角,则”的逆命题为真命题;

③命题“”的否定是“”;

④若:,则的充分不必要条件.

真命题的个数序号_________.

【答案】①③④

【解析】

结合方差公式可判断①;当时,两向量可能同向,夹角为,可判断②;根据全称命题的否定是特称命题,可判断③;④中将命题等价转化后可判断的充分不必要条件.

对①,若样本为,方差为,则的方差为,题中原方差为16,则新数据对应方差为:64

对②,平面向量夹角为锐角,则的逆命题为,则 夹角为锐角,两向量同向时,夹角为,为假命题;

对③,全称改存在,再否定结论,可判断正确;

对④,,故的充分不必要条件,正确;

综上所述,正确的命题为:①③④

故答案为:①③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:①越小,XY有关联的可信度越小;②若两个随机变量的线性相关性越强,则相关系数r的值越接近于1;“若,则类比推出,“若,则;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,推理形式错误.其中说法正确的有( )个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个极值点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆锥的高,是圆锥底面的直径,是底面圆周上一点,的中点,平面和平面将圆锥截去部分后的几何体如图所示.

1)求证:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1)求曲线的极坐标方程和直线l的直角坐标方程;

2)设直线l与曲线交于不同的两点AB,点M为抛物线的焦点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,为等腰直角三角形,,设点中点,点中点,点上一点,且

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,侧棱底面 垂直于为棱上的点,.

(1)若为棱的中点,求证://平面

(2)当时,求平面与平面所成的锐二面角的余弦值;

(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱柱中,侧棱底面平面为棱的中点.

1)证明:

2)求二面角的平面角的正弦值;

3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,的中点,平面,且

1)求证:

2)求与平面所成角的正弦值;

3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案