精英家教网 > 高中数学 > 题目详情
13.已知集合M={x|1+x≥0},N={x|$\frac{4}{1-x}$>0},则M∩N=(  )
A.{x|-1≤x<1}B.{x|x>1}C.{x|-1<x<1}D.{x|x≥-1}

分析 分别求出集合M和N,由此能求出M∩N的值.

解答 解:∵集合M={x|1+x≥0}={x|x≥-1},
N={x|$\frac{4}{1-x}$>0}={x|x<1},
∴M∩N={x|-1≤x<1}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{{e}^{x}-1}{{e}^{x}+1}$(e为自然对数的底数,e=2.71828…).
(1)证明:函数f(x)为奇函数;
(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2-m+1)+f(-$\frac{3}{4}$)与0的大小关系;
(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[kea,keb].若存在,求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=sin(2x-\frac{π}{3})$.
(Ⅰ)当x∈R时,求f(x)的单调增区间;
(Ⅱ)当$x∈[0,\frac{π}{2}]$时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示的伪代码,如果输入x的值为5,则输出的结果y为23.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a>0,函数f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若对任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,则实数a的取值范围是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=1-$\frac{2}{{2}^{x}+a}$为定义在R上的奇函数.
(1)试判断函数的单调性,并用定义加以证明;
(2)若关于x的方程f(x)=m在[-1,1]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.经测算,某型号汽车在匀速行驶过程中每小时耗油量y(升)与速度x(千米/每小时) (50≤x≤120)的关系可近似表示为:$y=\left\{\begin{array}{l}\frac{1}{75}({{x^2}-130x+4900}),x∈[{50,80})\\ 12-\frac{x}{60},x∈[{80,120}]\end{array}\right.$
(Ⅰ)该型号汽车速度为多少时,可使得每小时耗油量最低?
(Ⅱ)已知A,B两地相距120公里,假定该型号汽车匀速从A地驶向B地,则汽车速度为多少时总耗油量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P(-2,$\frac{\sqrt{14}}{2}$)在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,过点P作圆O:x2+y2=2的切线,切点为A,B,若直线AB恰好过椭圆C的左焦点F,则a2+b2的值是(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标系xOy中,终边在坐标轴上的角α的集合是{α|α=$\frac{nπ}{2}$,n∈Z}.

查看答案和解析>>

同步练习册答案