精英家教网 > 高中数学 > 题目详情
(2012•上海二模)如果无穷数列{an}满足下列条件:①
an+an+2
2
≤an+1;②存在实数M,使an≤M.其中n∈N*,那么我们称数列{an}为Ω数列.
(1)设数列{bn}的通项为bn=5n-2n,且是Ω数列,求M的取值范围;
(2)设{cn}是各项为正数的等比数列,Sn是其前项和,c3=
1
4
,S3=
7
4
证明:数列{Sn}是Ω数列;
(3)设数列{dn}是各项均为正整数的Ω数列,求证:dn≤dn+1
分析:(1)根据新定义,确定数列{bn}中的最大项,即可得到M的取值范围;
(2)确定数列的通项cn=
1
2n-1
,求得数列的和,证明
Sn+Sn+2
2
<Sn+1,且Sn<2即可;
(3)假设存在正整数k使得dk>dk+1成立,由数列{dn}的各项均为正整数,可得dk≥dk+1+1,即dk+1≤dk-1,利用
dk+dk+2
2
≤dk+1,可得dk+2≤dk+1-1,由此类推,可得dk+m≤dk-m(m∈N*),从而可得dk+m<0,这与数列{dn}的各项均为正数矛盾,由此得证.
解答:(1)解:∵bn+1-bn=5-2n,∴n≥3,bn+1-bn<0,故数列{bn}单调递减;(3分)
当n=1,2时,bn+1-bn>0,即b1<b2<b3
则数列{bn}中的最大项是b3=7,所以M≥7.(4分)
(2)证明:∵{cn}是各项正数的等比数列,Sn是其前n项和,c3=
1
4
,S3=
7
4

设其公比为q>0,∴
c3
q2
+
c3
q
+c3=
7
4
.(6分)
整理,得6q2-q-1=0,解得q=
1
2
,q=-
1
3
(舍去).
∴c1=1,cn=
1
2n-1
,Sn=2-
1
2n
=Sn+2,S<2.(8分)
对任意的n∈N*,有
Sn+Sn+2
2
=2-
1
2n
-
1
2n+2
<2-
1
2n+1
=Sn+1,且Sn<2,
故{Sn}是Ω数列.(10分)
(3)证明:假设存在正整数k使得dk>dk+1成立,由数列{dn}的各项均为正整数,可得dk≥dk+1+1,即dk+1≤dk-1.
因为
dk+dk+2
2
≤dk+1,所以dk+2≤2dk+1-dk≤2(dk-1)-dk=dk-2.
由dk+2≤2dk+1-dk及dk>dk+1得dk+2<2dk+1-dk+1=dk+1,故dk+2≤dk+1-1.
因为
dk+1+dk+3
2
≤dk+2,所以dk+3≤2dk+2-dk+1≤2(dk+1-1)-dk+1=dk+1-2≤dk-3,
由此类推,可得dk+m≤dk-m(m∈N*).(14分)
又存在M,使dk≤M,∴m>M,使dk+m<0,这与数列{dn}的各项均为正数矛盾,所以假设不成立,
即对任意n∈N*,都有dk≤dk+1成立.(16分)
点评:本题考查新定义,考查学生接受新信息的能力,考查反证法,考查学生分析解决问题的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•上海二模)一个简单几何体的主视图、左视图如图所示,则其俯视图  不可能为①长方形;②正方形;③圆;④椭圆.其中正确的是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)执行如图所示的程序框图,输出的S值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)已知全集U=R,函数y=
2x-1
的定义域为集合A,则CUA=
{x|x<0}
{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)用一个与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为
8
2
3
π
8
2
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海二模)设双曲线
x2
4
-y2=1的右焦点为F,点P1、P2、…、Pn是其右上方一段(2≤x≤2
5
,y≥0)上的点,线段|PkF|的长度为ak,(k=1,2,3,…,n).若数列{an}成等差数列且公差d∈(
1
5
5
5
),则n最大取值为
14
14

查看答案和解析>>

同步练习册答案