精英家教网 > 高中数学 > 题目详情

【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线

)求的值和直线的直角坐标方程及的参数方程;

)已知曲线的参数方程为,(为参数),直线交于两点,求的值

【答案】的直角坐标方程为的参数方程为:

【解析】

)将点的极坐标方程代入直线的极坐标方程可求出的值,然后将直线方程化为普通方程,确定直线的倾斜角,即可将直线的方程表示为参数方程的形式;

)将曲线的参数方程表示普通方程,然后将()中直线的参数方程与曲线的普通方程联立,得到关于的一元二次方程,并列出韦达定理,根据的几何意义计算出

,于是可得出

的值。

解:()因为点,所以

于是的直角坐标方程为

的参数方程为: (t为参数)

)由

的参数方程代入

,设该方程的两根为,由直线的参数的几何意义及曲线知,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表是某公司20185~12月份研发费用(百万元)和产品销量(万台)的具体数据:

5

6

7

8

9

10

11

12

研发费用(百万元)

2

3

6

10

21

13

15

18

产品销量(万台)

1

1

2

2.5

6

3.5

3.5

4.5

(Ⅰ)根据数据可知之间存在线性相关关系,求出的线性回归方程(系数精确到0.01);

(Ⅱ)该公司制定了如下奖励制度:以(单位:万台)表示日销售,当时,不设奖;当时,每位员工每日奖励200元;当时,每位员工每日奖励300元;当时,每位员工每日奖励400.现已知该公司某月份日销售(万台)服从正态分布(其中20185-12月产品销售平均数的二十分之一),请你估计每位员工该月(按30天计算)获得奖励金额总数大约多少元.

参考数据:

参考公式:相关系数,其回归直线中的,若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.

(I)求椭圆的方程和抛物线的方程;

(II)设上两点 关于轴对称,直线与椭圆相交于点异于点),直线轴相交于点.若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知定点,点轴上运动,点轴上运动,点为坐标平面内的动点,且满足.

1)求动点的轨迹的方程;

2)过曲线第一象限上一点(其中)作切线交直线于点,连结并延长交直线于点,求当面积取最小值时切点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是,且以两焦点间的线段为直径的圆的内接正方形面积是.

1)求椭圆的方程;

2)过左焦点的直线相交于两点,直线,过作垂直于的直线与直线交于点,求的最小值和此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点的异于轴的切线,过点的异于轴的切线.交于点,记的轨迹为.

1)求的方程;

2)已知在点处的切线交直线于点,过原点平行的直线交于点.证明:以为直径的圆截轴的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中,EF分别为的中点.沿将矩形折起,使,如图所示.PQ分别为线段的中点,连接.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为元(为圆周率).该蓄水池的体积最大时______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,EF分别为AB的三等分点,若沿着FGED折叠使得点AB重合,如图2所示,连结GCBD

1)求证:平面平面BCDE

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案