精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,菱形ABCD与矩形BDEF所在平面互相垂直,

(1)求证:FC∥平面AED
(2)若,当二面角为直二面角时,求k的值.
(1)根据面面平行的性质定理来分析得到证明,关键是证明平面FBC∥平面EDA
(2)

试题分析:(1)证明:
平面FBC∥平面EDA
平面
(2)取EFBD的中点MN. 由于AE=AF=CE=CF
所以,且
就是二面角的平面角
连接AC,当=90°即二面角为直二面角时,

点评:解决立体几何中的平行和垂直的证明,需要熟练的运用线面平行和垂直 判定定理和性质定理阿丽解答。而对于角的求解,通常就是利用定义作出角,然后结合三角形来得到结论,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,在棱长为3的正方体中,.

⑴求两条异面直线所成角的余弦值;
⑵求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图1,在等腰梯形中,上一点, ,且.将梯形沿折成直二面角,如图2所示.

(Ⅰ)求证:平面平面
(Ⅱ)设点关于点的对称点为,点所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若α、β是两个不同的平面,m、n是两条不同直线,则下列命题不正确的是
A.α∥β,m⊥α,则m⊥β
B.m∥n,m⊥α,则n⊥α
C. n∥α,n⊥β,则α⊥β
D.αβ=m,n与α、β所成的角相等,则m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)三棱柱中,侧棱底面

(1)求异面直线所成角的余弦值;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面.给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中正确命题的序号是(  )
A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

同步练习册答案