分析 (1)设出函数的解析式,代入求解即可.
(2)化简不等式,利用函数的单调性转化求解即可.
解答 解:(1)设f(x)=logax,函数f(x)的图象过点(2,-1),
可得-1=loga2,解得a=$\frac{1}{2}$.
函数f(x)的解析式:f(x)=$lo{g}_{\frac{1}{2}}x$.
(2)g(x)=log${\;}_{\frac{1}{2}}$|x|-x2在(-∞,0)∪(0,+∞)上是偶函数,且在(0,+∞)上减函数,
∴g(x-1)+1<0?g(x-1)<-1=g(1).
∴x-1>1或x-1<-1,
解得使g(x-1)+1<0成立的x的取值范围:(-∞,0)∪(2,+∞).
点评 本题考查函数的单调性的应用,函数恒成立条件的转化,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等腰直角三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{11}{10}\sqrt{10}$ | C. | $\sqrt{3}$+52 | D. | $\sqrt{3}$-52 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{39}}{26}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com