精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且对任意正实数x1、x2(x1≠x2),恒
f(x1)-f(x2)
x1-x2
>0
,则一定有(  )
A、f(cos600°)>f(log
1
2
32
)
B、f(cos600°)>f(-log
1
2
32
)
C、f(-cos600°)>f(log
1
2
32
)
D、f(-cos600°)>f(-log
1
2
32
)
分析:根据对任意正实数x1、x2(x1≠x2),恒有
f(x1)-f(x2)
x1-x2
>0
,易知函数的单调性,根据选项分析cos600°与
log
32
1
2
的大小,从而确定选项.
解答:解;∵对任意正实数x1、x2(x1≠x2),恒有
f(x1)-f(x2)
x1-x2
>0
,f(x)的定义域为(-∞,0)∪(0,+∞),
∴f(x)在区间(-∞,0)、(0,+∞)单调递增,
而cos600°=-
1
2
log
32
1
2
=-
1
3

∴cos600°<
log
32
1
2
<0
∴-cos600°>
log
32
1
2
>0
f(-cos600°)>f(-
log
32
1
2

故选D.
点评:考查函数的单调性的定义及应用定义比较函数值的大小,此题和三角函数值和对数结合起来,增加了题目的难度和灵活性,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤
12
时,f(x)=x-x2
(1)求证:f(x)是周期函数;
(2)求f(x)在区间[1,2]上的解析式;
(3)求方程f(x)=log10000x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(-x)的定义域为[-1,0)∪(0,1],其图象是两条直线的一部分(如图所示),则不等式f(x)-f(-x)>-1的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为[-1,1],当x∈[-1,0)时,f(x)=-(
1
2
)
x

(1)求函数f(x)在[0,1]上的值域;
(2)若x∈(0,1],
1
4
f2(x)-
λ
2
f(x)+1的最小值为-2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2-2x-3,求f(x)的解析式.
(2)已知奇函数f(x)的定义域为[-3,3],且在区间[-3,0]内递增,求满足f(2m-1)+f(m2-2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设a>0,f(x)=
ex
a
+
a
ex
是R上的偶函数,求实数a的值;
(2)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

同步练习册答案