精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=
1
4
x2-
1
2
(x∈R),g(x)=lg
3-x
3+x
(-3<x<3)
(1)分别判断函数f(x)和g(x)的奇偶性;
(2)设函数h(x)=f(x)+g(x),问:函数h(x)在区间(-2,2)上是否有零点?请说明理由.
分析:(1)利用函数奇偶性的定义即可作出判断;
(2)函数h(x)=f(x)+g(x),计算函数值h(0),h(-2),得h(0)h(-2)<0,根据零点存在定理可知∴函数h(x)在区间(-2,0)上有零点.从而函数h(x)在区间(-2,0)上有零点.
解答:解:(1)知f(x),g(x)的定义域关于原点对称,
∵f(x)=
1
4
x2-
1
2

∴f(-x)=
1
4
(-x)2-
1
2
=
1
4
x2-
1
2
=f(x),
∴函数f(x)为偶函数.
∵g(x)=lg
3-x
3+x
,∴g(-x)=lg
3+x
3-x
=-lg
3-x
3+x
=-f(x),
∴函数g(x)为奇函数.
(2)函数h(x)=f(x)+g(x),
∴h(0)=f(0)+g(0)=-
1
2
+lg1=-
1
2
<0,
h(-2)=f(-2)+g(-2)=
1
2
+lg5=
1
2
>0,
∴函数h(x)在区间(-2,0)上有零点.
从而函数h(x)在区间(-2,0)上有零点.
点评:本题考查函数定义域的求解及函数奇偶性的判断,考查函数零点的判定定理.定义是解决函数奇偶性的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案