精英家教网 > 高中数学 > 题目详情

根据下列条件,分别求出双曲线的标准方程.

(1)过点P(3,-),离心率e=;

(2)F1、F2是双曲线左、右焦点,P是双曲线上一点,且∠F1PF2=60°,=12,离心率为2.

双曲线方程为-=1.


解析:

(1)若焦点在x轴上,设双曲线方程为-=1,

由e=,有=,

又由a2+b2=c2,解①②得a2=1,b2=.

若焦点在y轴上,设双曲线方程为-=1,

同理有=,-=1,a2+b2=c2.

解得b2=-(舍去).

∴所求双曲线方程为x2-4y2=1.

(2)设双曲线方程为-=1,

因e==2,

∴2a=c,由||PF1|-|PF2||=2a=c.

由余弦定理得(2c)2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos60°),

∴4c2=c2+|PF1|·|PF2|.

=|PF1||PF2|sin60°=12.

∴|PF1||PF2|=48.

∴3c2=48,得a2=4,b2=12.

∴所求双曲线方程为-=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据下列条件分别求出函数f(x)的解析式
观察法:(1)f(x+
1
x
)=x2+
1
x2
求f(x);
换元法:(2)f(x-2)=x2+3x+1求f(x);
待定系数法:(3)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
复合函数的解析式:(4)已知f(x)=x2-1,g(x)=
x+1
,求f[g(x)]]和g[f(x)]的解析式,交代定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3;
②斜率为1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3;
②斜率为1.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省金华市婺城区宾虹中学高二(上)期中数学试卷(解析版) 题型:解答题

设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3;
②斜率为1.

查看答案和解析>>

同步练习册答案