精英家教网 > 高中数学 > 题目详情
19.已知四棱台ABCD-A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为AA1的中点.
(1)求证:AB1⊥平面PBC;
(2)在BC上找一点Q,使得PQ∥平面CDD1C1,并求三棱锥P-QBB1的体积.

分析 (1)由AA1⊥底面ABCD,可得AA1⊥BC,结合ABCD为正方形,可得AB1⊥BC,再由△ABP≌△A1AB1,得AB1⊥BP,然后利用线面垂直的判定可得AB1⊥平面PBC;
(2)取DD1中点M,连接PM,CM,在BC上取点Q,使CQ=PM=3,则CQ∥PM,得到四边形PQCM为平行四边形,则PQ∥CM,从而得到PQ∥面CC1D1D.然后求出${S}_{△PB{B}_{1}}={S}_{梯形AB{B}_{1}{A}_{1}}-{S}_{△P{A}_{1}{B}_{1}}-{S}_{△PAB}$,利用${V}_{P-QB{B}_{1}}={V}_{Q-PB{B}_{1}}=\frac{1}{3}{S}_{PB{B}_{1}}•BQ$求得三棱锥P-QBB1的体积.

解答 (1)证明:∵AA1⊥底面ABCD,BC?面ABCD,∴AA1⊥BC,
∵ABCD为正方形,∴AB⊥BC,则BC⊥面AA1B1B,
∵AB1?面AA1B1B,∴AB1⊥BC,
∵A1B1=AP=2,A1A=AB=4,∠B1A1A=∠PAB=90°,
∴△ABP≌△A1AB1,可得AB1⊥BP.
∵BP∩BC=B,∴AB1⊥平面PBC;
(2)解:取DD1中点M,连接PM,CM,在BC上取点Q,使CQ=PM=3,则CQ∥PM,
∴四边形PQCM为平行四边形,得PQ∥CM.
∴PQ∥面CC1D1D.
∵PQCM为平行四边形,∴$CQ=PM=\frac{1}{2}$(A1D1+AD)=3,则BQ=1.
又${S}_{△PB{B}_{1}}={S}_{梯形AB{B}_{1}{A}_{1}}-{S}_{△P{A}_{1}{B}_{1}}-{S}_{△PAB}$
=$\frac{1}{2}(2+4)×4-\frac{1}{2}×2×2-\frac{1}{2}×2×4=6$.
∴${V}_{P-QB{B}_{1}}={V}_{Q-PB{B}_{1}}=\frac{1}{3}{S}_{PB{B}_{1}}•BQ$=$\frac{1}{3}×6×1=2$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+$\frac{a}{x}$(a为非零实数)
(1)判断f(x)的奇偶性,并加以证明;
(2)当a=4时,?①用定义证明f(x)在(0,2)上单调递减,在(2,+∞)上单调递增;
?②写出f(x)在(-∞,0)的单调区间(不用加以证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于x的不等式(x-a)(x+1-a)≥0的解集为P,若1∉P,则实数a的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设等差数列{an}的公差为d,前n项和为Sn,已知a5=9,S7=49.
(1)求数列{an}的通项公式;
(2)令bn=an•2n,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-2|.
(1)解不等式f(x+1)+f(x+2)<4;
(2)若?x∈R使得f(ax)+|a|f(x)≤4成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.
(I)求函数g(x)=f(x)f′(x)-f2(x)的最大值和最小正周期;
(Ⅱ)若f(x)=2f′(x),求$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{g(x),x>0}\end{array}\right.$,若g(x)是奇函数.则g(x)=-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤2}\\{f(4-x),2<x<4}\end{array}$,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为 (  )
A.$\frac{9}{8}$B.2-$\frac{\sqrt{3}}{2}$C.$\frac{25}{16}$D.$\sqrt{3}$-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数z=(1-2i)(3+i),其中i为虚数单位,则|z|是5$\sqrt{2}$.

查看答案和解析>>

同步练习册答案