精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若f(x)的两个零点分别为x1 , x2 , 则|x1﹣x2|=(
A.
B.1+
C.2
D. +ln2

【答案】C
【解析】解:当x>0时,f(x)=log4(x+1)+x﹣1,

由f(x)=0,可得x﹣1=

当x≤0时,f(x)=x﹣ +3,

由f(x)=0,可得

作出函数图象如图:

∵函数y= 与y= 互为反函数,则其图象关于直线y=x对称,

分别是把y= 与y= 向左平移1个单位得到的,

∴两函数图象关于直线y=x+1对称,

又直线y=x﹣1与y=x+3也关于直线y=x+1对称,

不妨设y=x+3(x≤0)与y= 的交点的横坐标为x1,y=x﹣1(x>0)与y= 的交点的横坐标为x2

则|x1﹣x2|=

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从双曲线 =1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|﹣|MT|等于(
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 满足| |=3,| |=2| |,若| |≥3恒成立,则实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为R上的可导函数,且对x∈R,均有f(x)>f′(x),则有(
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2.
(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)过点( ,1),且焦距为2
(1)求椭圆C的方程;
(2)若直线l:y=k(x+1)(k>﹣2)与椭圆C相交于不同的两点A、B,线段AB的中点M到直线2x+y+t=0的距离为 ,求t(t>2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx﹣ax2+3,若存在实数m、n∈[1,5]满足n﹣m≥2时,f(m)=f(n)成立,则实数a的最大值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F 是棱 PA上的一个动点,E为PD的中点.
(Ⅰ)若 AF=1,求证:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 与平面 PCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知图一是四面体ABCD的三视图,E是AB的中点,F是CD的中点.
(1)求四面体ABCD的体积;
(2)求EF与平面ABC所成的角.

查看答案和解析>>

同步练习册答案