精英家教网 > 高中数学 > 题目详情

如图,已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.

(Ⅰ)求证:EF⊥平面PAD;

(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;

(Ⅲ)若M为线段AB上靠近A的一个动点,问当AM长度等于多少时,直线MF与平面EFG所成角的正弦值等于

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)若PD与平面ABCD所成角为60°,且AD=2,AB=4,求点A到平面PED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PEC;
(2)设CD的中点为H,求证:平面EFH∥平面PBC;
(3)求AC与平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ<
π2
),则四棱锥P-ABCD的体积V的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.
(Ⅰ)当E是AB的中点时,求证:AF∥平面PEC;
(Ⅱ)要使二面角P-EC-D的大小为45°,试确定E点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.
(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M-EFG的体积.

查看答案和解析>>

同步练习册答案