精英家教网 > 高中数学 > 题目详情
设数列是等差数列,且,则这个数列的前5项和=
A. 10B. 15C. 20D. 25
D              

试题分析:在等差数列中,。所以,由得,3=,故选D。
点评:简单题,在等差数列中,之间的关系是常常考到的内容,往往通过布列方程组解题。在等差数列中,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和满足,等差数列满足
(1)求数列的通项公式;
(2)设,数列的前项和为,求证 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在数列中,,则的通项公式为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列中,,则 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,已知第行有个数,两端的数均为,并且相邻两行数之间有一定的关系,则第8行第4个数为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

个正数排成列:


 
 

其中每一行的数由左至右成等差数列,每一列的数由上至下成等比数列,并且所有公比相等,已知,,,则=           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角的三边长,满足
(1)在之间插入2011个数,使这2013个数构成以为首项的等差数列,且它们的和为,求的最小值;
(2)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(3)已知成等比数列,若数列满足,证明:数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列的前项和为,若对任意,都有.
⑴求数列的首项;
⑵求证:数列是等比数列,并求数列的通项公式;
⑶数列满足,问是否存在,使得恒成立?如果存在,求出 的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知数列的前项和为,且满足
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列的前项和为,求证:

查看答案和解析>>

同步练习册答案