精英家教网 > 高中数学 > 题目详情
(1) 若cos(75°+α)=
3
5
,(-180°<α<-90°)
,求sin(105°-α)+cos(375°-α)值;
(2) 在△ABC中,若sinA+cosA=-
7
13
,求sinA-cosA,tanA的值.
分析:(1)∵105°-α=180°-(75°+α),375°-α=360°+(15°-α),我们根据诱导公式结合已知中cos(75°+α)=
3
5
,(-180°<α<-90°)
,即可求出sin(105°-α)+cos(375°-α)的值;
(2)由sinA+cosA=-
7
13
,由A为三角形的内角,则A为钝角,结合平方关系,我们不难求出sinA-cosA,tanA的值.
解答:解:(1)sin(105°-α)=sin[180°-(75°+α)]=sin(75°+α)
∵-180°<α<-90°
-105°<75°+α<-15°又cos(75°+α)=
3
5
>0

∴-90°<75°+α<-15°
sin(7 +α)=-
4
5

cos(375°-α)=cos(15°-α)=cos[9 -(75°+α)]=sin(75°+α)=-
4
5

∴原式=-
8
5

(2)由sinA+cosA=-
7
13
两边平方得1+2sinAcosA=
49
169

而0<A<π2sinAcosA=-
120
169
<0

π
2
<A<π

1-2sinAcosA=
289
169

(sinA-cosA)2=(
17
13
)2

又sinA-cosA>0sinA-cosA=
17
13

sinA=
5
13
cosA=-
12
13

tanA=-
5
12
点评:本题考查的知识点是三角函数如恒等变换应用,运用诱导公式化简求值,同角三角函数关系等,分析已知角与未知角之间的关系,以选择恰当的公式进行化简求值是三角函数求值中最关键的环节.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cos(x-
π
4
),sin(x-
π
4
))
b
=(cos(x+
π
4
),-sin(x+
π
4
))
f(x)=
a
b
-k|
a
+
b
|
,x∈[0,π].
(1)若x=
12
,求
a
b
|
a
+
b
|

(2)若k=1,当x为何值时,f(x)有最小值,最小值是多少?
(3)若f(x)的最大值为3,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,0),B(0,2),C(cosα,sinα)且0<α<π
(1)若|
OA
+
OC
|=
7
,求
OB
OC
的夹角;
(2)若
AC
BC
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函数f(x)=
m
n
,且f(x)图象上一个最高点为P(
π
12
,2)
,与P最近的一个最低点的坐标为(
12
,-2)

(1)求函数f(x)的解析式;
(2)设a为常数,判断方程f(x)=a在区间[0,
π
2
]
上的解的个数;
(3)在锐角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,0),B(0,2),C(cosα,sinα),且0<α<π.
(1)若|
OA
+
OC
|=
7
,求角α;
(2)若
AC
BC
,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(cos(x-
π
4
),sin(x-
π
4
))
b
=(cos(x+
π
4
),-sin(x+
π
4
))
f(x)=
a
b
-k|
a
+
b
|
,x∈[0,π].
(1)若x=
12
,求
a
b
|
a
+
b
|

(2)若k=1,当x为何值时,f(x)有最小值,最小值是多少?
(3)若f(x)的最大值为3,求k的值.

查看答案和解析>>

同步练习册答案