精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,函数f(x)= +2.
(1)求函数f(x)的最小正周期;
(2)设锐角△ABC内角A,B,C所对的边分别为a,b,c,若f(A)=2, ,求角A和边c的值.

【答案】
(1)解: f(x)= +2=

=

=

=

∴f(x)的最小正周期


(2)解:由(1)知 ,解得

,∴

解法一:由余弦定理得 =c2﹣3c+9=7.

解得c=1或c=2.

若c=1,则 <0,

∴B为钝角,这与△ABC为锐角三角形不符,c≠1

∴c=2.

解法二:由正弦定理得 ,解得

∵B是锐角,∴

∵C=π﹣(A+B),

,解得c=2.


【解析】(1)利用平面向量数量积的运算,三角函数恒等变换的应用化简函数解析式可得f(x)= ,利用三角函数的周期公式即可得解.(2)由(1)知可得 ,结合A的范围可求 ,解法一:由余弦定理解得c的值,解法二:由正弦定理解得sinB,由B是锐角,可求cosB,利用三角形内角和定理,两角和的正弦函数公式可求sinC,根据正弦定理即可解得c的值.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出S的值为(

A.14
B.20
C.30
D.55

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校今年准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12,则报考飞行员的总人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< ),f(0)=﹣ ,且函数f(x)图象上的任意两条对称轴之间距离的最小值是
(1)求函数f(x)的解析式;
(2)若f( )= <α< ),求cos(α+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图和频率分布折线图;
(3)估计成绩在[60,90)分的学生比例;
(4)估计成绩在85分以下的学生比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2(n∈N*),数列{bn}满足b1=1,且点P(bn , bn+1)(n∈N*)在直线y=x+2上.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{anbn}的前n项和Dn
(3)设cn=ansin2 ,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值b,则下面的四个值中不为定值的是(

A.点P到平面QEF的距离
B.三棱锥P﹣QEF的体积
C.直线PQ与平面PEF所成的角
D.二面角P﹣EF﹣Q的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得 ,其中为抽取的第个零件的尺寸,

(1)求 的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).

(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?

(ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)

附:样本 的相关系数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,前n项和为 是首项为2的等比数列,且公比大于0, , .

(Ⅰ)求的通项公式;

(Ⅱ)求数列的前n项和.

查看答案和解析>>

同步练习册答案