精英家教网 > 高中数学 > 题目详情
6.在直角坐标系xOy中,圆C的方程为(x-2)2+y2=9.
(1)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求C的极坐标方程.
(2)直线L的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数),L交C于A、B两点,且$|{AB}|=2\sqrt{7}$,求L的斜率.

分析 (1)利用x=ρcosθ,y=ρsinθ,求C的极坐标方程.
(2)求出圆心(2,0)到直线l的距离,利用勾股定理建立方程,即可求L的斜率.

解答 解:(1)∵x=ρcosθ,y=ρsinθ,∴C方程为ρ2-4ρcosθ-5=0.
(2)∵l为y=xtanα=kx(k=tanα),
圆心(2,0)到直线l的距离为$d=\frac{{|{2k}|}}{{\sqrt{1+{k^2}}}}$,
又∵$|{AB}|=2\sqrt{7}$∴$d=\frac{{|{2k}|}}{{\sqrt{1+{k^2}}}}=\sqrt{{3^2}-{{({\sqrt{7}})}^2}}=\sqrt{2}$,解得k2=1,∴k=±1.
综上所述,l的斜率为±1.

点评 本题考查普通方程化为极坐标方程,考查点到直线距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在函数y=2sin(ωx+φ)(ω>0)的一个周期上,当x=$\frac{π}{6}$时,有最大值2,当x=$\frac{2π}{3}$时,有最小值-2,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且2Sn=1-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设${b_n}={log_{\frac{1}{3}}}{a_n}$,记数列{anbn}的前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}$+$\frac{2}{4}$+$\frac{3}{4}$,…,$\frac{1}{10}$+$\frac{2}{10}$+$\frac{3}{10}$+…+$\frac{9}{10}$,…,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,那么数列{bn}的前n项和Sn为$\frac{4n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,$\overrightarrow{AD}•\overrightarrow{BC}=0$,$|{\overrightarrow{AB}}|=3$,$|{\overrightarrow{BC}}|=5$,$\overrightarrow{BD}=\frac{2}{3}\overrightarrow{DC}$,点P满足$\overrightarrow{AP}=λ\overrightarrow{AB}+({1-λ})\overrightarrow{AC}$,λ∈R,则$\overrightarrow{AP}•\overrightarrow{AD}$为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=ln$\frac{1}{2}$,b=sin$\frac{1}{2}$,c=2${\;}^{-\frac{1}{2}}$,则a,b,c按照从小到大排列为(  )
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{2sinx-1}$的定义域为(  )
A.[$\frac{π}{6}$,$\frac{5π}{6}$]B.[2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z)
C.(2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$)(k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{5π}{6}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式ax2+bx+c>0(a≠0)的解集为{x|m<x<n},且m>0,则不等式cx2+bx+a<0的解集为(  )
A.($\frac{1}{n}$,$\frac{1}{m}$)B.($\frac{1}{m}$,$\frac{1}{n}$)C.(-∞,$\frac{1}{n}$)∪($\frac{1}{m}$,+∞)D.(-∞,$\frac{1}{m}$)∪($\frac{1}{n}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量|$\overrightarrow{e}$|=1,向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$$•\overrightarrow{e}$=1,$\overrightarrow{b}$$•\overrightarrow{e}$=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则$\overrightarrow{a}$$•\overrightarrow{b}$的最小值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案