精英家教网 > 高中数学 > 题目详情
5.在△ABC中,$\overrightarrow{AE}$=$\frac{1}{5}$$\overrightarrow{AB}$,EF∥BC,EF交AC于F,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{BF}$可以用$\overrightarrow{a}$,$\overrightarrow{b}$表示的形式是$\overrightarrow{BF}$=$-\overrightarrow{a}$$+\frac{1}{5}$$\overrightarrow{b}$.

分析 根据条件可以得出$\overrightarrow{EF}=\frac{1}{5}\overrightarrow{BC},\overrightarrow{BE}=-\frac{4}{5}\overrightarrow{AB}$,将$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$带入,从而可以得到$\overrightarrow{BF}=-\frac{4}{5}\overrightarrow{AB}+\frac{1}{5}(\overrightarrow{AC}-\overrightarrow{AB})$,这样进行向量的数乘运算便可用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{BF}$.

解答 解:如图,∵$\overrightarrow{AE}=\frac{1}{5}\overrightarrow{AB}$;

∴$\overrightarrow{EF}=\frac{1}{5}\overrightarrow{BC}$,$\overrightarrow{BE}=\frac{4}{5}\overrightarrow{BA}$;
∴$\overrightarrow{BF}=\overrightarrow{BE}+\overrightarrow{EF}=\frac{4}{5}\overrightarrow{BA}+\frac{1}{5}\overrightarrow{BC}$=$-\frac{4}{5}\overrightarrow{AB}+\frac{1}{5}(\overrightarrow{AC}-\overrightarrow{AB})=-\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}$.

点评 考查相似三角形对应边的比例关系,向量加法、减法,及数乘的几何意义,以及向量的数乘运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在值三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在A1B上.
(1)求证:BC⊥A1B;
(2)若VABC-A1B1C1=3$\sqrt{3}$,BC=2,∠BA1C=$\frac{π}{6}$,求三棱锥A1-ABC的体积及AD长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,P为椭圆C上任意一点.
(1)当PF1⊥PF2时,PF1=$\sqrt{2}$,且PF2所在的弦|PQ|=$\frac{4\sqrt{2}}{3}$,求椭圆C的方程.
(2)若EF为圆N:x2+(y-2)2=1的任意一条直径,请求$\overrightarrow{PE}$•$\overrightarrow{PF}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断下列函数的奇偶性.
(1)f(x)=cos($\frac{π}{2}$+2x)cos(π+x).
(2)f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$.
(3)f(x)=$\frac{{e}^{sinx}+{e}^{-sinx}}{{e}^{sinx}-{e}^{-sinx}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.P是抛物线y2=2x上一点,设M(m,0)(m>0),求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tanα=2,则sinαcosα+2sin2α的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式5x+8<x+m(m是常数)的解集是(-∞,3),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线y=-x+m与圆x2+y2=1有2个交点,则m的取值范围为-$\sqrt{2}$<m<$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在30°的二面角的一个平面内有一点,他到另一个平面内的距离是8,这点到棱的距离等于16.

查看答案和解析>>

同步练习册答案