精英家教网 > 高中数学 > 题目详情
18.已知圆C:x2+(y-a)2=4,点A(1,0).
(1)当过点A的圆C的切线存在时,求实数a的范围;
(2)设AM,AN为圆C的两条切线,M,N为切点,当MN=$\frac{4\sqrt{5}}{5}$时,求MN所在直线的方程.

分析 (1)由直线与圆的位置关系,得当点A在圆外或圆上过点A的圆C的切线存在.再由点与圆的位置关系,建立关于a的不等式,解之即得实数a的取值范围;
(2)根据圆的对称性得到|DM|=$\frac{1}{2}$|MN|=$\frac{2\sqrt{5}}{5}$.利用垂径定理算出CD的长度,在Rt△MCD中,算出cos∠MCD的值,得cos∠MCA=$\frac{2}{\sqrt{5}}$,然后在Rt△MCA中利用解三角形知识算出AC长,结合|OC|=2得出|AM|=1.由题意知MN是以A为圆心、半径为AM的圆与圆C的公共弦,由此列式即可求出MN所在直线的方程.

解答 解:(1)由题意,A在圆上或圆外,则12+(0-a)2≥4,∵a$≤-\sqrt{3}$或a$≥\sqrt{3}$;
(2)如图,设MN与AC交于D点
由|MN|=$\frac{4\sqrt{5}}{5}$,得|DM|=$\frac{1}{2}$|MN|=$\frac{2\sqrt{5}}{5}$.
又∵|MC|=2,∴由垂径定理,得|CD|=$\frac{4}{\sqrt{5}}$,
∴Rt△MCD中,cos∠MCD=$\frac{2}{\sqrt{5}}$,即cos∠MCA=$\frac{2}{\sqrt{5}}$
∵Rt△MCA中,|AC|=$\sqrt{5}$,∴|OC|=2,|AM|=1
MN是以A为圆心、半径为AM的圆与圆C的公共弦,
∵圆A的方程为:(x-1)2+y2=1,圆C的方程的方程为:x2+(y-2)2=4或x2+(y+2)2=4,
∴MN所在直线方程为(x-1)2+y2-1-x2-(y-2)2+4=0即x-2y=0;
或(x-1)2+y2-1-x2-(y+2)2+4=0即x+2y=0,
综上所述,直线MN得方程为x-2y=0或x+2y=0.

点评 本题考查了点与圆的位置关系、直线与圆的位置关系、圆的标准方程和圆的简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若直线2x-y+2=0与直线y=kx+1平行,则实数k的值为(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a=0.78,b=80.7,c=log0.78,则a、b、c的大小关系是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{{e}^{2x}}{x}$的导函数为(  )
A.f′(x)=2e2xB.f′(x)=$\frac{(2x-1){e}^{2x}}{{x}^{2}}$C.f′(x)=$\frac{2{e}^{2x}}{x}$D.f′(x)=$\frac{(x-1){e}^{2x}}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于曲线C:f(x,y)=0,若存在非负实数M和m,使得曲线C上任意一点P(x,y),m≤|OP|≤M恒成立(其中O为坐标原点),则称曲线C为有界曲线,且称M的最小值M0为曲线C的外确界,m的最大值m0为曲线C的内确界.
(1)写出曲线x+y=1(0<x<4)的外确界M0与内确界m0
(2)曲线y2=4x与曲线(x-1)2+y2=4是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;
(3)已知曲线C上任意一点P(x,y)到定点F1(-1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为(  )
A.9:4B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn=an+n2-1(n∈N*).
(1)求{an}的通项公式;
(2)求证:$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$f(x)=\sqrt{x({x+1})}$,$g(x)=\frac{1}{{\sqrt{x}}}$,则f(x)•g(x)=$\sqrt{x+1}$(x>0)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知对任意x1、x2∈(0,+∞)且x1<x2,幂函数$f(x)={x^{-\frac{p^2}{2}+p+\frac{3}{2}}}$(p∈Z),满足f(x1)<f(x2),并且对任意的x∈R,f(x)-f(-x)=0.
(1)求p的值,并写出函数f(x)的解析式;
(2)对于(1)中求得的函数f(x),设g(x)=-qf(x)+(2q-1)x+1,问:是否存在负实数q,使得g(x)在(-∞,-4)上是减函数,且在[-4,+∞)上是增函数?若存在,求出q的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案