精英家教网 > 高中数学 > 题目详情

【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________

【答案】

【解析】

由图可得:三根都是阳线的有一卦,三根都是阴线的有一卦,两根阳线一根阴线的有三卦,两根阴线一根阳线的有三卦,利用组合数可得基本事件总数,分类利用计算原理求得符合要求的基本事件个数为10个,问题得解.

从八卦中任取两卦,共有种取法

若两卦的六根线中恰有三根阳线和三根阴线,可按取得卦的阳、阴线的根数分类计算;

当有一卦阳、阴线的根数为3、0时,另一卦阳、阴线的根数为0、3,共有种取法.

当有一卦阳、阴线的根数为2、1时,另一卦阳、阴线的根数为1、2,共有种取法.

所以两卦的六根线中恰有三根阳线和三根阴线的取法有种.

则从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:函数.

1)求函数在点处的切线方程;

2)求函数上的最大值;

3)当时,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某单位甲、乙、丙三个部门的员工人数分别为241616.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.

I)应从甲、乙、丙三个部门的员工中分别抽取多少人?

II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.

i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;

ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费基准保费与道路交通事故相联系的浮动比率),具体情况如下表:

交强险浮动因素和浮动费率比率表

类别

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮

上两个年度未发生有责任道路交通事故

下浮

上三个及以上年度未发生有责任道路交通事故

下浮

上一个年度发生一次有责任不涉及死亡的道路交通事故

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮

上一个年度发生有责任道路交通死亡事故

上浮

为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:

类型

数量

20

10

10

38

20

2

若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为(

A.aB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是(

A.若任意选择三门课程,选法总数为

B.若物理和化学至少选一门,选法总数为

C.若物理和历史不能同时选,选法总数为

D.若物理和化学至少选一门,且物理和历史不能同时选,选法总数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.

1)写出函数的解析式;

2)若对任意 恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间内是单调递增函数,求实数a的取值范围;

2)若函数有两个极值点,且,求证:.(注:为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.

1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 从中任意取出 3件进行检验,求至少有 件是合格品的概率;

2)若厂家发给商家 件产品,其中有不合格,按合同规定 商家从这 件产品中任取件,都进行检验,只有 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.

查看答案和解析>>

同步练习册答案