精英家教网 > 高中数学 > 题目详情

【题目】如图,平面四边形ABCD中,EFADBD中点,ABADCD=2, BD=2 ,∠BDC=90°,将△ABD沿对角线BD折起至△,使平面⊥平面BCD,则四面体中,下列结论不正确是 ( )

A. EF∥平面

B. 异面直线CD所成的角为90°

C. 异面直线EF所成的角为60°

D. 直线与平面BCD所成的角为30°

【答案】C

【解析】

根据线线平行判定定理、异面直线所成角、直线与平面所成角等知识对选项ABCD进行逐一判断其正确与否.

解:选项A:因为EFADBD中点,

所以

因为平面

平面

所以EF∥平面

所以选项A正确;

选项B:因为平面⊥平面BCD

平面平面BCD

且∠BDC=90°,即

又因为平面BCD

平面

所以异面直线CD所成的角为90°,

选项B正确;

选项C:由选项B可知平面

所以

因为ADCD=2,

CD=2,

所以由勾股定理得,

中,

BC

中,

,即

因为

所以

故选项C错误;

选项D:连接

因为

所以

因为是中点,

所以

因为平面⊥平面BCD

平面平面BCD

又因为平面

平面

所以即为直线与平面BCD所成的角,

中,

所以

所以

故直线与平面BCD所成的角为30°,

故选项D正确,

本题不正确的选项为C,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxx+1.

1)求曲线y=fx)在点(1f1))处的切线方程:

2)若非零实数a使得fxaxax2x∈[1,+)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:

组别

年龄

A组统计结果

B组统计结果

经常使用单车

偶尔使用单车

经常使用单车

偶尔使用单车

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.求这60人中“年龄达到35岁且偶尔使用单车”的人数;

(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄应取25还是35?请通过比较的观测值的大小加以说明.

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我边防局接到情报,在海礁所在直线的一侧点处有走私团伙在进行交易活动,边防局迅速派出快艇前去搜捕:如图,已知快艇出发位置在的另一侧码头处,公里,公里,

1)是否存在点,使快艇沿航线的路程相等;如存在,则建立适当的直角坐标系,求出点的轨迹方程,且画出轨迹的大致图形;如不存在,请说明理由;

2)问走私船在怎样的区域上时,路线比路线的路程短,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线l经过椭圆的左焦点,且l与椭圆交于AB两点,过椭圆N右焦点的直线交抛物线MCD两点,交椭圆于GH两点,且面积为3.

1)求椭圆N的方程;

2)当时,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆市第八中学校为了解学生喜爱运动是否与性别有关,从全校学生中随机抽取50名学生进行问卷调查,得到如图所示的列联表.

喜爱运动

不喜爱运动

合计

男生

22

8

30

女生

8

12

20

合计

30

20

50

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

1)能否有97.5%以上的把握认为“喜爱运动”与“性别”有关;

2)用分层抽样的方法从被调查的20名女生中抽取5名进行问卷调查,求抽取喜爱运动的女生、不喜爱运动的女生各有多少的人;

3)在(2)抽取的女生中,随机选出2人进行座谈,求至少有1名是喜爱运动的女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“斗拱”是中国古代建筑中特有的构件,从最初的承重作用,到明清时期集承重与装饰作用于一体。在立柱顶、额枋和檐檩间或构架间,从枋上加的一层层探出成弓形的承重结构叫拱,拱与拱之间垫的方形木块叫斗。如图所示,是“散斗”(又名“三才升”)的三视图,则它的体积为( )

A. B. C. 53 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的焦点和上项点分别为,我们称为椭圆特征三角形”.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是相似椭圆,且三角形的相似比即为椭圆的相似比. 若椭圆,直线

已知椭圆与椭圆是相似椭圆,求的值及椭圆与椭圆相似比;

求点到椭圆上点的最大距离;

如图,设直线与椭圆相交于两点,与椭圆交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线:交抛物线两点,

(1)若的中点为,直线的斜率为,证明:为定值;

(2)求面积的最大值.

查看答案和解析>>

同步练习册答案