【题目】已知点A(﹣,0)和B(,0),动点C到A、B两点的距离之差的绝对值为2.
(1)求点C的轨迹方程;
(2)点C的轨迹与经过点(2,0)且斜率为1的直线交于D、E两点,求线段DE的长.
科目:高中数学 来源: 题型:
【题目】已知数列{an}(n∈N*)是公差不为0的等差数列,a1=1,且 , , 成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{ }的前n项和为Tn , 求证:Tn<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b是正奇数,数列{cn}(n∈N*)定义如下:c1=a,c2=b,对任意n≥3,cn是cn﹣1+cn﹣2的最大奇约数.数列{cn}中的所有项构成集合A.
(1)若a=9,b=15,写出集合A;
(2)对k≥1,令dk=max{c2k , c2k﹣1}(max{p,q}表示p,q中的较大值),求证:dk+1≤dk;
(3)证明集合A是有限集,并写出集合A中的最小数.】
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC内角A,B,C的对边分别是a,b,c,且满足a( sinC+cosC)=b+c.
(I) 求角A的大小;
(Ⅱ)已知函数f(x)=sin(ωx+A)的最小正周期为π,求f(x)的减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的实根分别为x1、x2和x3、x4 , 若x1<x3<x2<x4 , 则实数a的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx﹣ax2+ .
(I) 当a= 时,判断f(x)在其定义上的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 其中x1<x2 . 求证:
(i)f(x2)>0;
(ii)x1+x2> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的中位数是83,乙班学生成绩的平均数是86,则x+y的值为( )
A.168
B.169
C.8
D.9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com