精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-9x2cosα+48xcosβ,g(x)=f'(x),且对任意的实数t均有g(1+e-|t|)≥0,g(3+sint)≤0.
(I)求g(2);
(II)求函数f(x)的解析式;
(Ⅲ)记函数h(x)=f(x)-
23
x3+(a+9)x2
-(b+24)x(a,b∈R),若y=h(x)在区间[-1,2]上是单调减函数,求a+b的最小值.
分析:(I)由题得,g(x)=3x2-18xcosα+48cosβ,又1+e-|t|∈(1,2],3+sint∈[2,4],从而g(x)≥0在x∈(1,2]恒成立,g(x)≤0在x∈[2,4]恒成立,最后得出g(2)的值即可;
(II)先求出g(x)=0的另一根的取值范围,得出2+x0=6cosα,最后得到得cosα=1,cosβ=
1
2
的值,代入函数解析式即可;
(III)由题意得出关于a,b的不等关系:
2a+b-1≥0
4a-b+4≤0.
,作出不等式组表示的平面区域,利用线性规划的方法解决即可.
解答:精英家教网解:(I)由题得,g(x)=3x2-18xcosα+48cosβ,又1+e-|t|∈(1,2],3+sint∈[2,4],
知g(x)≥0在x∈(1,2]恒成立,g(x)≤0在x∈[2,4]恒成立,
所以g(2)=0…(5分)
(II)设g(x)=0的另一根为x0,由条件得x0≥4,而2+x0=6cosα,
所以6cosα≥6,又6cosα≤6,所以6cosα=6,得cosα=1,cosβ=
1
2

即f(x)=x3-9x2+24x.                   
(Ⅲ)∵y=h(x)在区间[-1,2]上是单调减函数,∴h′(x)=x2+2ax-b≤0在区间[-1,2]上恒成立.                    
根据二次函数图象可知h′(-1)≤0且h′(2)≤0,
即:
1-2a-b≤0
4+4a-b≤0
也即
2a+b-1≥0
4a-b+4≤0.
]
作出不等式组表示的平面区域如图:
当直线z=a+b经过交点P(-
1
2
,2)时,z=a+b取得最小值z=-
1
2
+2=
3
2

∴z=a+b取得最小值为
3
2
…(15分)
点评:本题考查待定系数法求解析式、函数与方程的综合运用、简单线性规划的应用问题,解答线性规划的问题的关键是应用数形结合思想方法,综合性强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案