精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
1
2
x2-
1
2
x-1
,令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R).
(1)若?x>0,,使f(x)≤0成立,求实数m的取值范围;
(2)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对?x1,x2∈[1,m],恒有H(x1)-H(x2)<1.
分析:(1)由题意f(x)=
1
2
x2+mlnx
,得f(x)=x+
m
x
.讨论m的范围判断函数的单调性与其最值,通过最小值与0的关系得到m的范围.
(2)H′(x)=x+
m
x
-(m+1)=
(x-1)(x-m)
x
≤0,所以函数H(x)在[1,m]上单调递减.H(x1)-H(x2)<1?
1
2
m2-mlnm-
1
2
<1?
1
2
m-lnm-
3
2m
<0
,所以设h(m)=
1
2
m-lnm-
3
2m
(1<m≤e)
判断其单调性求其最值即可证得.
解答:解:(1)由题意f(x)=
1
2
x2+mlnx
,得f(x)=x+
m
x

①当m>0时,f(x)=x+
m
x
>0
,因此f(x)在(0,+∞)上单调递增,由对数函数的性质,知f(x)的值域为R,因此?x>0,使f(x)≤0成立;
②当m=0时,f(x)=
x2
2
>0
,对?x>0,f(x)>0恒成立;
③当m<0时,由f(x)=x+
m
x
x=
-m

x
-m
(
-m
,+∞)
- 0 +
f(x) 极小值
此时f(x)min=f(
-m
)=-
m
2
+mln
-m

f(x)min>0⇒
-
m
2
+mln
-m
>0
m<0
⇒-e<m<0

所以对?x>0,f(x)>0恒成立,则实数m的取值范围是(-e,0].
故?x>0,使f(x)≤0成立,实数m的取值范围是(-∞,-e]∪(0,+∞).
(2)∵H(x)=f(x)-(m+1)x=
1
2
x2+mlnx-(m+1)x

H′(x)=x+
m
x
-(m+1)=
(x-1)(x-m)
x

?x∈[1,m],H′(x)=
(x-1)(x-m)
x
≤0,所以函数H(x)在[1,m]上单调递减.
于是H(x1)-H(x2)≤H(1)-H(m)=
1
2
m2-mlnm-
1
2

H(x1)-H(x2)<1?
1
2
m2-mlnm-
1
2
<1?
1
2
m-lnm-
3
2m
<0

h(m)=
1
2
m-lnm-
3
2m
(1<m≤e)

h′(m)=
1
2
-
1
m
+
3
2m2
=
3
2
(
1
m
-
1
3
)2+
1
3
>0

所以函数h(m)=
1
2
m-lnm-
3
2m
在(1,e]上是单调增函数,
所以h(m)≤h(e)=
e
2
-1-
3
2e
=
(e-3)(e+1)
2e
<0

故对?x1,x2∈[1,m],恒有H(x1)-H(x2)<1.
点评:解决至少存在问题可从正面入手找到存在的原因也可以先做它的反面,证明不等式问题一般利用导数判断函数单调性通过函数的单调性求函数的最值,在利用最值求证不等式,函数与不等式结合是高考考查的热点之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=1-cos(πx+2φ)(0<φ<
π
2
)
的图象过点(
1
2
,  2)
,若有4个不同的正数xi满足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),则x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-2x1+2x
.判断并证明函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,则函数g(x+3)的零点所在的区间为(  )
A、(-1,0)
B、(-4,-3)
C、(-3,-2)或(-2,-1)
D、(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
-1,x>0
0,x=0
1,x<0
,函数f(x)=x2?g(x),则满足不等式f(a-2)+f(a2)>0的实数a的取值范围是(  )
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步练习册答案