精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,x∈R,a∈R.
(1)a=1时,求证:f(x)在区间(﹣∞,0)上为单调增函数;
(2)当方程f(x)=3有解时,求a的取值范围.

【答案】
(1)证明:a=1时,f(x)=

x<0时,f(x)=

令x1<x2<0,

则f(x1)﹣f(x2)= =

∵x1<x2<0,

∴(1﹣x1)(1﹣x2)>0,x1﹣x2<0,

∴f(x1)<f(x2),

∴f(x)在区间(﹣∞,0)上为单调增函数


(2)解:由f(x)= =3,

得:ax=3|x|+2,

画出函数y=ax和y=3|x|+2的图象,如图示:

结合图象,a>3或a<﹣3.


【解析】(1)求出f(x)的解析式,根据函数单调性的定义证明即可;(2)问题转化为函数y=ax和y=3|x|+2有交点,从而求出a的范围即可.
【考点精析】利用函数单调性的判断方法对题目进行判断即可得到答案,需要熟知单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:

玩具名称

工时(分钟)

5

7

4

利润(元)

5

6

3

(Ⅰ)用每天生产种玩具个数种玩具表示每天的利润(元);

(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体是由三棱柱截去一部分后而成, 的中点.

(Ⅰ)若上,且的中点,求证:直线//平面

(Ⅱ) 若平面 , 求点到面的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解方程ln(2x+1)=ln(x2﹣2);
求函数f(x)=( 2x+2×( x(x≤﹣1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)设点轴上的射影为点,过点的直线与椭圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2bx+5(b∈R).
(1)若b=2,试解不等式f(x)<10;
(2)若f(x)在区间[﹣4,﹣2]上的最小值为﹣11,试求b的值;
(3)若|f(x)﹣5|≤1在区间(0,1)上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax+(k﹣1)ax(a>且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范围;
(3)若f(1)= ,设g(x)=a2x+a2x﹣2mf(x),g(x)在[1,+∞)上的最小值为﹣1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),定义.

(1)求函数的极值

(2)若,且存在使,求实数的取值范围;

(3)若,试讨论函数)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求在点处的切线方程;

(Ⅱ)讨论函数的单调性;

(Ⅲ)若存在两个极值点,求的最小值.

查看答案和解析>>

同步练习册答案