精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).

(1)将曲线的极坐标方程化为直角坐标方程;

(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.

【答案】(1) .(2) .

【解析】试题分析:

本题(1)可以利用极坐标与直角坐标 互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数 的关系式,利用,得到的三角方程,解方程得到的值,要注意角范围.

试题解析:

(1)由

,

∴曲线的直角坐标方程为

(2)将代入圆的方程得.

化简得

两点对应的参数分别为,则

,

.

,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.

Ⅰ)求椭圆C1的标准方程;

Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的(1),过点C(1,0)的直线l与椭圆C2交于AB两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为的偶函数满足对,有,且当时, ,若函数上至多有三个零点,则的取值范围是

__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)若,求函数的单调区间.

)若函数在区间上是减函数,求实数的取值范围.

)过坐标原点作曲线的切线,证明:切点的横坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数, ,都有,且当时, ,若函数)在区间内恰有三个不同零点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).

(1)将曲线的极坐标方程化为直角坐标方程;

(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.

(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、2倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,梯形中, 中点.将沿翻折到的位置,使,如图2.

)求证:平面与平面

)求直线与平面所成角的正弦值;

)设分别为的中点,试比较三棱锥和三棱锥(图中未画出)的体积大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某课外实习作业小组调查了1000名职场人士,就入职两家公司的意愿做了统计,得到如下数据分布:

(1)请分别计算40岁以上(含40岁)与40岁以下全体中选择甲公司的频率(保留两位小数),根据计算结果,你能初步得出什么结论?

(2)若分析选择意愿与年龄这两个分类变量,计算得到的的观测值为,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

查看答案和解析>>

同步练习册答案