【题目】已知数列是首项的等差数列,设.
(1)求证:是等比数列;
(2)记,求数列的前项和;
(3)在(2)的条件下,记,若对任意正整数,不等式恒成立,求整数的最大值.
科目:高中数学 来源: 题型:
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:,经统计,其高度均在区间,内,将其按,,,,,,,,,,,分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.
(1)求图中的值,并估计这批树苗的平均高度(同一组中的数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于,两个试验区,部分数据如下列联表:
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有的把握认为优质树苗与,两个试验区有关系,并说明理由.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且a1=,an+1=Sn+(n∈N*,t为常数).
(Ⅰ)若数列{an}为等比数列,求t的值;
(Ⅱ)若t>﹣4,bn=lgan+1,数列{bn}前n项和为Tn,当且仅当n=6时Tn取最小值,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,过点作与轴平行的直线,点为动点在直线上的投影,且满足.
(1)求动点的轨迹的方程;
(2)已知点为曲线上的一点,且曲线在点处的切线为,若与直线相交于点,试探究在轴上是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O和点A,与y轴交于点O和点B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com