精英家教网 > 高中数学 > 题目详情

【题目】某校随机抽取某次高三数学模拟考试甲、乙两班各10名同学的客观题成绩(满分60分),统计后获得成绩数据的茎叶图(以十位数字为茎,个位数字为叶),如图所示: (Ⅰ)分别计算两组数据的平均数,并比较哪个班级的客观题平均成绩更好;
(Ⅱ)从这两组数据各取两个数据,求其中至少有2个满分(60分)的概率;
(Ⅲ)规定客观题成绩不低于55分为“优秀客观卷”,以这20人的样本数据来估计此次高三数学模拟的总体数据,若从总体中任选4人,记X表示抽到“优秀客观卷”的学生人数,求X的分布列及数学期望.

【答案】解:(I)甲、乙两组数据的平均数分别为51.5,49, 甲班的客观题平均成绩更好.
(II)设从这两组数据各取两个数据,至少有2个满分(60分)为事件A,
则P(A)= =
(III)

X

0

1

2

3

4

P

(人)
【解析】(I)根据数据计算两组数据的平均数;(Ⅱ)从这两组数据中分别抽取一个数据,求其中至少有2个满分(60分)的概率;(Ⅲ) ,求出其概率,可得X的分布列及数学期望.
【考点精析】利用离散型随机变量及其分布列对题目进行判断即可得到答案,需要熟知在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的左、右焦点分别为F1、F2 , 离心率e= ,与双曲线 有相同的焦点. (I)求椭圆C的标准方程;
(II)过点F1的直线l与该椭圆C交于M、N两点,且| + N|= ,求直线l的方程.
(Ⅲ)是否存在圆心在原点的圆,使得该圆的任一条切线与椭圆C有两个交点A、B,且OA⊥OB?若存在,写出该圆的方程,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 展开式中,第五项的二项式系数与第三项的二项式系数的比是14:3.
(1)求n.
(2)求含x2项的系数.
(3)求展开式中所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年5月,北京市提出地铁分段计价的相关意见,针对“你能接受的最高票价是多少?”这个问题,在某地铁站口随机对50人进行调查,调查数据的频率分布直方图及被调查者中35岁以下的人数与统计结果如下: (Ⅰ)根据频率分布直方图,求a的值,并估计众数,说明此众数的实际意义;
(Ⅱ)从“能接受的最高票价”落在[8,10),[10,12]的被调查者中各随机选取3人进行追踪调查,记选中的6人中35岁以上(含35岁)的人数为X,求随机变量X的分布列及数学期望.

最高票价

35岁以下人数

[2,4)

2

[4,6)

8

[6,8)

12

[8,10)

5

[10,12]

3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】雾霾是人体健康的隐形杀手,爱护环境,人人有责.某环保实验室在雾霾天采用清洁剂处理教室空气质量.实验发现,当在教室释放清洁剂的过程中,空气中清洁剂的含剂浓度y(mg/m3)与时间t(h)成正比;释放完毕后,y与t的函数关系为y=( ta(a为常数),如图,已知当教室的空气中含剂浓度在0.25mg/m3以上时,教室最适合人体活动.根据图中信息,从一次释放清洁剂开始,这间教室有h最适合人体活动.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C: + =1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为 ,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2 ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的有
①常数数列既是等差数列也是等比数列;
②在△ABC中,若sin2A+sin2B=sin2C,则△ABC为直角三角形;
③若A,B为锐角三角形的两个内角,则tanAtanB>1;
④若Sn为数列{an}的前n项和,则此数列的通项an=Sn﹣Sn1(n>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E点做EF⊥PB交PB于点F.求证:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.

查看答案和解析>>

同步练习册答案