精英家教网 > 高中数学 > 题目详情
(2012•杨浦区一模)设函数f(x)=log2(2x+1)的反函数为y=f-1(x),若关于x的方程f-1(x)=m+f(x)在[1,2]上有解,则实数m的取值范围是
[log2
1
3
log2
3
5
]
[log2
1
3
log2
3
5
]
分析:由f(x)=log2(2x+1)可求得y=f-1(x),又关于x的方程f-1(x)=m+f(x)在[1,2]上有解,可得m=log2
2x-1
2x+1
,从而可得答案.
解答:解:∵y=f(x)=log2(2x+1)
∴2x+1=2y
∴x=log2(2y-1)
∴y=f-1(x)=log2(2x-1)
∵关于x的方程f-1(x)=m+f(x)在[1,2]上有解,
∴m=f-1(x)-f(x)=log2
2x-1
2x+1
在[1,2]上有解,而y=log2
2x-1
2x+1
为增函数,
log2
21-1
21+1
≤m≤log2
22-1
22+1
,即log2
1
3
≤m≤log2
3
5

故答案为:[log2
1
3
log2
3
5
].
点评:本题考查反函数,通过反函数考查函数恒成立问题,考查转化思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•杨浦区一模)已知f(x)是R上的偶函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)若直线l:ax+by=1与圆C:x2+y2=1有两个不同的交点,则点P(a,b)与圆C的位置关系是
P在圆外
P在圆外

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)若函数y=f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称y=f(x)为“Ω函数”.
(1)判断下列函数,是否为“Ω函数”,并说明理由;
①f(x)=x3         ②f(x)=2x
(2)已知函数f(x)=tanx是一个“Ω函数”,求出所有的有序实数对(a,b).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)计算:
lim
n→∞
(1-
2n
n+3
)
=
-1
-1

查看答案和解析>>

同步练习册答案